Section 3: Conclusions and Future Work

Theoretical Foundation

- RL is more complex than supervised learning
- Transfer in RL introduces specific scenarios and issues
- Recent theoretical results in RL shows that it has strong connections with statistical learning theory results (see (Munos & Szepesvari, 2008))
- Recent theoretical results in TL in supervised learning shows the effectiveness of TL w.r.t. single task learning
 - Inductive bias learning
 - Multi-task learning

State of the Art

<table>
<thead>
<tr>
<th></th>
<th>Supervised Learning</th>
<th>Reinforcement Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Task</td>
<td>(Vapnik & Chervonenkis, 1971)</td>
<td>(Munos & Szepesvari, 2008)</td>
</tr>
</tbody>
</table>
| Multi Task | (Baxter, 2000) | (Ben-David & Shuller, 2008) | Nothing!
Inductive Bias Learning

- “A model of inductive bias learning” (Baxter, 2000)
- Scenario
 - Distribution \mathcal{Q} over task space \mathcal{P}
 - Training set m samples from each of n tasks
- Objective: find a hypothesis space H which contains good hypotheses for all the tasks in \mathcal{P} on average (according to distribution \mathcal{Q})

Inductive Bias Learning in RL

- If
 - enough tasks are provided to the learner and
 - enough samples per task are collected
 - the set of hypothesis spaces is not too big
- Then
 - The generalization error of the hypothesis space H can be bounded on new tasks drawn from \mathcal{Q}
 - The generalization performance is better than learning independently
 - The number of samples decreases with the number of tasks

Pros
- The scenario could be easily adapted to RL domains (distribution of MDPs/value functions)
- RL could be decomposed in a sequence of supervised learning problems (e.g., FQI)

Cons
- Not straightforward generalization of Baxter’s result across different iterations (e.g., FQI, policy improvement)
- Similar MDPs does not imply similar solutions
Transformation-Based MTL

- “A Notion of Task relatedness Yielding Provable Multiple-task Learning Guarantees” (Ben-David & Shuller, 2008)
- Scenario
 - Multi-task learning on \(n \) tasks
 - Training set: \(m \) samples from each of \(n \) tasks
 - Assumption: all the tasks pair-wise \(f \)-related, with \(f \) a transformation in a set of possible transformations \(\mathcal{F} \)
- Objective: given a target task, use all the samples to find the **high-level** characteristics of the solution and use the target samples to learn the **task-specific** solution

\[\mathcal{F} = \{f_1, f_2, f_8\} \]
Transformation-Based MTL

- If
 - enough samples per task are collected
 - enough target samples are collected
 - if the set of transformations is not too big
- Then
 - The performance for (any!) target task is better than learning independently
 - The number of samples decreases with the number of tasks

Transformation-Based MTL in RL

- Pros
 - RL could be decomposed in a sequence of supervised learning problems (e.g., FQI)
- Cons
 - Not straightforward definition of transformation in RL domains
 - Not straightforward generalization of Ben-David’s bounds across different iterations

Theoretical Foundation

- Similarities of RL and supervised learning
- Promising line of research
- Several issues still unsolved (even in TL in supervised learning!)

Fully Autonomous Transfer
The full transfer problem
- Different SxA
- N-to-1 transfer

Challenges
- Learn the mapping
- Select source tasks
- Transfer effectively

Humans can selecting a training sequence
Results in faster training / better performance

Meta-planning problem for agent learning
Useful Information for Sequence Construction

• **Common Sense**
 – Soccer balls roll after being kicked
 – Friction reduces an object’s speed

• **Domain Knowledge**
 – It is easier to complete short passes than long passes

• **Algorithmic Knowledge**
 – State space size can impact learning speed