Ordinal Preference Aggregation: Social Choice

A profile

Social choice mechanism
Ranking pictures [PGM+ AAAI-12]

A > B > C
Turker 1

B > A
Turker 2

B > C
Turker n
Social choice

R_i, R_i^*: full rankings over a set A of alternatives
Social Choice and Computer Science

Computational thinking + optimization algorithms

Social Choice

Strategic thinking + methods/principles of aggregation

PLATO
4th C. B.C.

LULL
13th C.

BORDA
18th C.

CONDORCET
18th C.

TURING et al.
20th C.

ARROW
20th C.

21st Century
Applications: real world

- People/agents often have conflicting preferences, yet they have to make a joint decision
Applications: academic world

- Multi-agent systems [Ephrati and Rosenschein 91]
- Recommendation systems [Ghosh et al. 99]
- Meta-search engines [Dwork et al. 01]
- Belief merging [Everaere et al. 07]
- Human computation (crowdsourcing) [Mao et al. AAAI-13]
- etc.
How to design a good social choice mechanism?

What is being “good”?
Two goals for social choice mechanisms

GOAL1: democracy

GOAL2: truth

THIS TUTORIAL
Common voting rules
(what has been done in the past two centuries)

• Mathematically, a social choice mechanism (voting rule) is a mapping from \{All profiles\} to \{outcomes\}
 – an outcome is usually a winner, a set of winners, or a ranking
 – \(m\) : number of alternatives (candidates)
 – \(n\) : number of agents (voters)
 – \(D=(P_1,\ldots,P_n)\) a profile

• Positional scoring rules
 • A score vector \(s_1,\ldots,s_m\)
 – For each vote \(V\), the alternative ranked in the \(i\)-th position gets \(s_i\) points
 – The alternative with the most total points is the winner

 • Special cases
 • Borda, with score vector \((m-1, m-2, \ldots, 0)\)
 • Plurality, with score vector \((1,0,\ldots,0)\) [Used in the US]
An example

• Three alternatives \(\{c_1, c_2, c_3\} \)
• Score vector \((2,1,0)\) (Borda)
• 3 votes,

\[
\begin{array}{ccc}
2 & 1 & 0 \\
2 & 1 & 0 \\
2 & 1 & 0 \\
\end{array}
\]

\(c_1 \) gets \(2+1+1=4 \), \(c_2 \) gets \(1+2+0=3 \),
\(c_3 \) gets \(0+0+2=2 \)

• The winner is \(c_1 \)
Single transferable vote (STV)

- Also called *instant run-off voting* or *alternative vote*
- The election has \(m-1\) rounds, in each round,
 - The alternative with the lowest plurality score drops out, and is removed from all votes
 - The last-remaining alternative is the winner
- [used in Australia and Ireland]

<table>
<thead>
<tr>
<th>a > b > c > d</th>
<th>d > a > b > c</th>
<th>c > d > a > b</th>
<th>b > c > d > a</th>
</tr>
</thead>
<tbody>
<tr>
<td>a > c > d</td>
<td>d > a > c</td>
<td>c > d > a</td>
<td>c > d > a</td>
</tr>
<tr>
<td>a > c</td>
<td>d > a > c</td>
<td>c > d > a</td>
<td>c > d > a</td>
</tr>
<tr>
<td>a > c</td>
<td>d > a > c</td>
<td>c > d > a</td>
<td>c > d > a</td>
</tr>
</tbody>
</table>

| 10 | 7 | 6 | 3 |
The Kemeny rule

- Kendall tau distance
 - \(K(V, W) = \# \{ \text{different pairwise comparisons} \} \)

- Kemeny rule
 - \(K(b > c > a, a > b > c) = ? \)
 - \(\text{Kemeny}(D) = \min_{W} K(D, W) = \min_{W} \sum_{P \in D} K(P, W) \)
 - For single winner, choose the top-ranked alternative in Kemeny\((D) \)
 - [Has a statistical interpretation]
 - NP-Hard [Bartholdi, Tovey & Trick’89]
...and many others

- Approval, Baldwin, Black, Bucklin, Coombs, Copeland, Dodgson, maximin, Nanson, Range voting, Schulze, Slater, ranked pairs, etc…
• **Q:** How to evaluate rules in terms of achieving democracy?

• **A:** Axiomatic approach
Axiomatic approach
(what has been done in the past 50 years)

• **Anonymity**: names of the voters do not matter
 – Fairness for the voters
• **Non-dictatorship**: there is no dictator, whose top-ranked alternative is always the winner
 – Fairness for the voters
• **Neutrality**: names of the alternatives do not matter
 – Fairness for the alternatives
• **Consistency**: if \(r(D_1) \cap r(D_2) \neq \emptyset \), then \(r(D_1 \cup D_2) = r(D_1) \cap r(D_2) \)
• **Condorcet consistency**: if there exists a Condorcet winner, then it must win
 – A Condorcet winner beats all other alternatives in pairwise elections
• **Easy to compute**: winner determination is in \(P \) [Bartholdi, Tovey & Trick’89]
 – Computational efficiency of preference aggregation
• **Hard to manipulate**: computing a beneficial false vote is hard [Bartholdi, Tovey & Trick’89]
Which axiom is more important?

<table>
<thead>
<tr>
<th>Method</th>
<th>Condorcet consistency</th>
<th>Consistency</th>
<th>Easy to compute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positional scoring</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>rules</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kemeny</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ranked pairs</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

- Some of these axiomatic properties are not compatible with others
- Food for thought: how to evaluate partial satisfaction of axioms?
An easy fact

• **Theorem.** For voting rules that selects a single winner, anonymity is not compatible with neutrality
 – proof:
Another easy fact
[Fishburn APSR-74]

• **Thm.** No positional scoring rule is Condorcet consistent:

 – suppose $s_1 > s_2 > s_3$

3 Voters

2 Voters

1 Voter

1 Voter

is the Condorcet winner

$3s_1 + 2s_2 + 1s_3$

$3s_1 + 3s_2 + 1s_3$
Not-So-Easy facts

• Arrow’s impossibility theorem
 – Google it!

• Gibbard-Satterthwaite theorem
 – Google it!

• Axiomatic characterization
 – Template: A voting rule satisfies axioms A1, A2, A2 ⇔ if it is rule X
 – If you believe in A1 A2 A3 are the most desirable properties then X is optimal
 – (anonymity+neutrality+consistency+continuity) ⇔ positional scoring rules [Young SIAMAM-75]
 – (neutrality+consistency+Condorcet consistency) ⇔ Kemeny [Young&Levenglick SIAMAM-78]
Statistical ideas

- Voters are imperfect
 - Nevertheless, we can argue that voting rules (asymptotically) reveal the ground truth
- Source of imperfection
 - A voter may have partial information
 - ...
Statistical ideas

• Condorcet’s Jury theorem
 – If Condorcet had been more hip, he’d have called it the “wisdom of crowds”

• MLE estimators
 – Kemeny and scoring rules
The Condorcet Jury theorem
[Condorcet 1785]

The Condorcet Jury theorem.

- Given
 - two alternatives \{a,b\}.
 - \(0.5 < p < 1\),

- Suppose
 - each agent’s preferences is generated i.i.d., such that
 - w/p \(p\), the same as the ground truth
 - w/p \(1-p\), different from the ground truth

- Then, as \(n \to \infty\), the majority of agents’ preferences converges in probability to the ground truth
The Condorcet Jury theorem
[Condorcet 1785]

The Condorcet Jury theorem.

• Given
 – two alternatives \{a,b\}.
 – \(0.5 < p < 1\),

• Suppose
 – each agent’s preferences is generated i.i.d., such that
 – w/p \(p\), the same as the ground truth
 – w/p \(1-p\), different from the ground truth

• Then, as \(n \to \infty\), the majority of agents’ preferences converges in probability to the ground truth
 – for \(p \approx 0.5\), prob grows as \(\sqrt{n}\)
The Condorcet Jury theorem
[Condorcet 1785]

Proof:
Assume \(n \) is odd (no tie-breaking needed)
Suppose \(m \) voters have voted correctly
Add 2 more voters (so keep odd number of voters)
Only time decision changes is when
 \(m \) is 1 vote short of majority and both new voters are correct
 \(m \) is equal to majority and both new voters are incorrect
The Condorcet Jury theorem
[Condorcet 1785]

Proof:
Assume \(n \) is odd (no tie-breaking needed)
Suppose \(m \) voters have voted correctly
Add 2 more voters (so keep odd number of voters)
Only time decision changes is when
\[
\begin{align*}
\text{m is 1 vote short of majority and both new voters are correct, } (1-p)p^2 \\
\text{m is equal to majority and both new voters are incorrect, } p(1-p)^2
\end{align*}
\]
Proof:
Assume \(n \) is odd (no tie-breaking needed)
Suppose \(m \) voters have voted correctly
Add 2 more voters (so keep odd number of voters)
Only time decision changes is when
\(m \) is 1 vote short of majority and both new voters are correct, \((1-p)p^2\) which is larger for \(p > 0.5 \)
\(m \) is equal to majority and both new voters are incorrect, \(p(1-p)^2 \)

The Condorcet Jury theorem
[Condorcet 1785]
The Condorcet Jury theorem
[Condorcet 1785]

Limitations of Condorcet Jury theorem

Only applies to choice between 2 alternatives
Supposes votes are uncorrelated
Ignores strategic voting (see above, only 2 alternatives)

...
Condorcet’s model

- Condorcet was not very clear how the Condorcet Jury theorem can be extended to m>2
- Young had an interpretation [Young APSR-1988]
- Parameter space
 - all combinations of opinions: an opinion is a pairwise comparison between candidates (can be cyclic)
 - $p<1$
- Sample space
 - all combinations of opinions
- Given “ground truth” opinions W and $p<1$, generate opinions V s.t. each opinion is i.i.d.
Mallows model [Mallows 1957]

- Parameter space
 - all rankings over candidates
 - $\varphi < 1$

- Sample space
 - all rankings over candidates

- Given a “ground truth” ranking W and $\varphi < 1$, generate a ranking V w.p.
 - $\Pr(V|W) \propto \varphi^{\text{Kendall}(V,W)}$

- MLE ranking is the Kemeny rule
Recent studies on Condorcet/Mallows model

- Learning [Lu and Boutilier ICML-11]
- Approximation by common voting rules [Caragiannis, Procaccia & Shah EC-13]
Classical voting rules as MLEs
[Conitzer&Sandholm UAI-05]

- When the outcomes are winning alternatives
 - MLE rules must satisfy consistency: if $r(D_1) \cap r(D_2) \neq \emptyset$, then $r(D_1 \cup D_2) = r(D_1) \cap r(D_2)$
 - All classical voting rules except positional scoring rules are NOT MLEs

- Positional scoring rules are MLEs

- This is NOT a coincidence!
 - All MLE rules that outputs winners satisfy anonymity and consistency
 - Positional scoring rules are the only voting rules that satisfy anonymity, neutrality, and consistency! [Young SIAMAM-75]
Classical voting rules as MLEs [Conitzer&Sandholm UAI-05]

• When the outcomes are winning rankings
 – MLE rules must satisfy reinforcement (the counterpart of consistency for rankings)
 – All classical voting rules except positional scoring rules and Kemeny are NOT MLEs

• This is not (completely) a coincidence!
 – Kemeny is the only preference function (that outputs rankings) that satisfies neutrality, reinforcement, and Condorcet consistency [Young&Levenglick SIAMAM-78]
2. Computational aspects

- Easy-to-compute axiom
- Hard-to-manipulate axiom
 - Computational thinking +
 game-theoretic analysis

3. Statistical approaches

- Condorcet Jury theorem
- Voting rules as MLEs

Computational thinking + optimization algorithms

Social Choice

Thank you!

Strategic thinking + methods/principles of aggregation
Social Choice in ACTION!

Leandro Soriano Marcolino1, Lirong Xia2, Toby Walsh3

1University of Southern California
2Rensselaer Polytechnic Institute
3University of New South Wales

May 4th, 2015
Outline

1. Introduction
2. Diversity Models
 - Related Work
 - Diversity Beats Strength?
 - Give a Hard Problem to a Diverse Team
3. Aggregation of Opinions
4. Team Assessment
Multi-agent Teams

Machine Learning (Ensemble Systems)

Crowdsourcing

Forecasting Systems

S. Marcolino, Xia, Walsh (USC,RPI,UNSW)
Multi-agent Teams

Machine Learning
(Ensemble Systems)

Crowdsourcing

Forecasting Systems
Multi-agent Teams

Why voting?
- Easy to implement
- Highly parallelizable
- Allows the (re-)use of existing agents
- Provides theoretical guarantees [Conitzer & Sandholm 2005, List01]
Problem Statement

Team Formation
Introduction

Problem Statement

Team Formation

- What is the best team of voting agents?
 - Novel predictions concerning the performance of different teams

[AAAI’2014]
[IJCAI’2013]
[AAAI’2014]
Problem Statement

Team Formation

- What is the best team of voting agents?
 - Novel predictions concerning the performance of different teams
- How to best aggregate their opinions?
 - Create new aggregation methodologies
Problem Statement

Team Formation

- What is the best team of voting agents?
 - Novel predictions concerning the performance of different teams
- How to best aggregate their opinions?
 - Create new aggregation methodologies
- How to assess their performance?
 - Create novel domain independent assessment methodologies
A diverse team of **weak agents** can outperform a uniform team (copies of **best agent**).

Diverse teams get stronger as action space grows

Novel ranking extraction methodology

Aggregation for solving POMDPs

Predicting success of voting agents
Outline

1. Introduction

2. Diversity Models
 - Related Work
 - Diversity Beats Strength?
 - Give a Hard Problem to a Diverse Team

3. Aggregation of Opinions

4. Team Assessment
A diverse team of weak agents can outperform a uniform team (copies of best agent)

Diverse teams get stronger as action space grows
Outline

1. Introduction

2. Diversity Models
 - Related Work
 - Diversity Beats Strength?
 - Give a Hard Problem to a Diverse Team

3. Aggregation of Opinions

4. Team Assessment
Related Work

Social Choice

- Condorcet Jury Theorem [Condorcet’1785]

<table>
<thead>
<tr>
<th>Correct</th>
<th>Incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>0.9999</td>
<td>0.00001</td>
</tr>
</tbody>
</table>

S. Marcolino, Xia, Walsh (USC, RPI, UNSW)
Social Choice

- Maximum Likelihood Approach [Young’1995, Conitzer and Sandholm’2005]

 "Correct Outcome"

 Agent 1 Agent 2 ... Agent n
Social Choice

- Maximum Likelihood Approach [Young’1995, Conitzer and Sandholm’2005]
 - Identical and Independent Agents
Social Choice

- Maximum Likelihood Approach [Young’1995, Conitzer and Sandholm’2005]
 - Identical and Independent Agents

- Team Formation?
Diversity Models

Related Work

Ensemble Systems

- Ensemble Systems [Polikar’2012]

Training

Classifying

How to make the base classifiers “different”?
Ensemble Systems

- Ensemble Systems [Polikar’2012]

How to make the base classifiers “different”?
Ensemble Systems

Bagging

- Randomly choose samples to train a classifier

Cat Cat Dog

Dog Cat Cat

Dog Dog Dog
Ensemble Systems

Boosting

- Randomly choose samples to train a classifier

- Check which instances it misclassifies
Ensemble Systems

Boosting

- Train a new classifier
 - Half of the instances: correct classified
 - Second half: incorrect classified
Ensemble Systems

Boosting

- Train a new classifier
- Use samples that first 2 classifiers disagree
Ensemble Systems

AdaBoost

- Every sample starts with uniform probability
Ensemble Systems

AdaBoost

- Increases probability of misclassified samples
Ensemble Systems

Random Forests

- Another common approach: random forests
Ensemble Systems

Random Forests

- Tree classifier
Ensemble Systems
Random Forests

- Each tree is trained with a random sample of the data
Diversity Models

Related Work

Ensemble Systems

Random Forests

Training a Tree

Choose a random subset to evaluate

X₁ X₂ X₃ X₄ X₅ X₆

Dog Cat Cat Dog Cat Dog Cat Dog

S. Marcolino, Xia, Walsh (USC, RPI, UNSW)

Social Choice in ACTION!

May 4th, 2015
Diversity

- All these methods are trying to make the base classifiers *different*, but...
- ... why Diversity is so important?
The "evil" side of the Condorcet Jury Theorem...
Diversity Models

Related Work

The “evil” side of the Condorcet Jury Theorem...

<table>
<thead>
<tr>
<th>Correct</th>
<th>Incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>0.00001</td>
<td>0.9999</td>
</tr>
</tbody>
</table>

S. Marcolino, Xia, Walsh (USC, RPI, UNSW)

Social Choice in ACTION!

May 4th, 2015
Outline

1. Introduction

2. Diversity Models
 - Related Work
 - Diversity Beats Strength?
 - Give a Hard Problem to a Diverse Team

3. Aggregation of Opinions

4. Team Assessment
Diversity Beats Strength?

Strongest agent

VS

[IJCAI’2013]
What is diversity?

Teams composed by different agents

IJCAI’2013
Diversity Models

Diversity Beats Strength?

Model

S. Marcolino, Xia, Walsh (USC,RPI,UNSW) Social Choice in ACTION! May 4th, 2015
Diversity Beats Strength?

Simple Example

1 0 1 1

Strength
0.75

1 = Plays best action
Diversity Beats Strength?

Simple Example

1 0 1 1 0.75

1 = Plays best action
Diversity Beats Strength?

Simple Example

1 = Plays best action

S. Marcolino, Xia, Walsh (USC,RPI,UNSW)

Social Choice in ACTION!

May 4th, 2015
Diversity Beats Strength?

Simple Example

```
1 0 1 1
0 1 1 0
1 1 0 0
1 1 0 1
0 0 1 1
1 1 1 0
1 1 1 1
```

Strength

- 0.75
- 0.50
- 1.00

1 = Plays best action

S. Marcolino, Xia, Walsh (USC, RPI, UNSW)
Diversity Beats Strength?

Simple Example

```
0.99 0 0.99 0.99 0.74
0 0.99 0.99 0 0.49
0.99 0.99 0 0 0.49
0.99 0.99 0 0.99 0.74
0 0 0.99 0.99 0.49
0.999 0 0.999 0.999 0.749
0.999 0.999 0.999 0.999 0.999
```

S. Marcolino, Xia, Walsh (USC,RPI,UNSW)
Outline

1. Introduction

2. Diversity Models
 - Related Work
 - Diversity Beats Strength?
 - Give a Hard Problem to a Diverse Team

3. Aggregation of Opinions

4. Team Assessment
Give a Hard Problem to a Diverse Team

For which problems?

[AAAI’2014]
Give a Hard Problem to a Diverse Team

For which problems?

Diverse team gets stronger as action space increases

[AAAI’2014]
Our Model
Give a Hard Problem to a Diverse Team

- Focus on team of weak agents (diverse) vs team of strong agents (uniform)
- Study how the performance of different teams change as the action space increases
Our Model

Agent

- Each agent has a probability distribution. E.g. choosing:
 - best action with prob 0.5,
 - 2nd best with prob 0.3,
 - 3rd best with prob 0.2
Our Model

Coordination Mechanism

- Plurality Voting

World State

Team takes action B2
Our Model

Agent Types

- **Spreading Tail (ST) Agents**
 - Set of actions with nonzero probabilities increases
 - Probability of choosing best action unchanged (verified later in our experiments)
Best Agent

- Assumption: best agent “spreads tail” at slower rate

- Verified in our experiments
Theorem

[Informal] Performance of diverse team improves when the size of the action space grows
A Hard Problem to a Diverse Team

Proof — Intuition

- Set of actions with nonzero probabilities increases as the action space gets larger

![Bar chart showing the increase in probability with more actions](chart)

- Fewer actions
- More actions
A Hard Problem to a Diverse Team

Proof — Intuition

- In the limit, the probability of voting for each suboptimal action converges to 0
A Hard Problem to a Diverse Team

Proof — Intuition

- The agents will only agree in the optimal choice!

Optimal

Action 23489123

Action 587234123

Action 458234560

Action 945345345
A Hard Problem to a Diverse Team

Theorem 2

- Performance of Diverse team improves, but...
- Does it converge to a high value?
A Hard Problem to a Diverse Team

Theorem 2

Theorem

[Informal] Diverse team converges (exponentially fast) to optimal performance as the number of agents goes to infinity
Uniform Team

- Assumption: best agent “spreads tail” at slower rate
Diversity Models

Give a Hard Problem to a Diverse Team

Uniform Team

- Assumption: best agent “spreads tail” at slower rate

- Teams where the agents “spread the tail” faster will converge faster
Experiments

Computer Go

- 6 Go playing agents: Fuego, GnuGo, Pachi, MoGo, FuegoΔ, FuegoΘ
6 Go playing agents: Fuego, GnuGo, Pachi, MoGo, Fuego\(\Delta\), Fuego\(\Theta\)
- Diverse: all agents
Experiments

Computer Go

- 6 Go playing agents: Fuego, GnuGo, Pachi, MoGo, FuegoΔ, FuegoΘ
- Uniform: Copies of Fuego (the best agent)
Experiments

Computer Go

- Winning rate against fixed adversary as board size increases

- Slopes:
 - Diverse: 0.010
 - Uniform: 0.005

- Influence of board size is higher on Diverse with $p = 0.0797$
Outline

1. Introduction

2. Diversity Models
 - Related Work
 - Diversity Beats Strength?
 - Give a Hard Problem to a Diverse Team

3. Aggregation of Opinions

4. Team Assessment
A diverse team of **weak agents** can outperform a uniform team (copies of **best agent**)

Diverse teams get stronger as action space grows

Novel ranking extraction methodology

Aggregation for solving POMDPs
Aggregation of Opinions

- Ranked Voting

- But... Where do the rankings come from?
Ranking

- From the agent’s search tree?
 - Is that accurate?
- The “evil” side of ranked voting rules...
Performance of Classical Voting Rules

- Computer Go Experiments of Classical Voting Rules

![Graph showing the performance of classical voting rules with varying number of agents.](chart.png)
“Real” agents have noisy rankings

New approach: Ranking by Sampling

\[A > B > D > C \]
By sampling, Borda significantly outperforms plurality voting.
Social Networks

Which nodes to pick for HIV prevention interventions?

S. Marcolino, Xia, Walsh (USC, RPI, UNSW)
Social Networks

Which nodes to pick for HIV prevention interventions?

S. Marcolino, Xia, Walsh (USC,RPI,UNSW)

Social Choice in ACTION!
Social Networks

Which nodes to pick for HIV prevention interventions?
Social Networks

Each agent works in a different instantiation

![Diagram of social networks with arrows connecting nodes A, B, C, D, E in different configurations](image)
Social Networks

Each agent works in a different instantiation

Weighted by how likely each network is.
Social Networks

Homeless Youth Social Network
Results

Influence Spread

Baseline Simple Plurality Weighted Plurality Copeland
Outline

1. Introduction

2. Diversity Models
 - Related Work
 - Diversity Beats Strength?
 - Give a Hard Problem to a Diverse Team

3. Aggregation of Opinions

4. Team Assessment
A diverse team of **weak agents** can outperform a uniform team (copies of **best agent**).

Diverse teams get stronger as action space grows.

Novel ranking extraction methodology

Aggregation for solving POMDPs

Predicting success of voting agents
Objective

- Predict the final outcome at any step of the problem solving process

Success?
Failure?
Motivation

- Allows an operator to take remedy procedures **online**
 - Dynamically change the team
 - Dynamically change the voting rule
 - Increase allocation of resources
 - ...
Logistic Regression

After learned, can be executed at ANY TIME

$$\hat{f}(\vec{x}) = \frac{1}{1 + e^{-(\alpha + \vec{\beta}^T \vec{x})}}$$

Model learned with voting patterns of full games.
Full Feature Vector

Iteration 0: $A_0 \ A_0 \ A_1$

\[\begin{align*}
0 & \ 0 & \ 0 & \ 0 & \ 1 & \ 0 & \ 0
\end{align*}\]
Full Feature Vector

Iteration 0:

\[\begin{array}{ccc}
 A0 & A0 & A1 \\
 \end{array} \]

\[\begin{array}{cccccc}
 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
 \end{array} \]

Iteration 1:

\[\begin{array}{ccc}
 A1 & A1 & A0 \\
 \end{array} \]

\[\begin{array}{cccccc}
 0 & 0 & 0 & 1 & 0 & 0 \\
 \end{array} \]
Full Feature Vector

<table>
<thead>
<tr>
<th>Iteration 0:</th>
<th>A0</th>
<th>A0</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration 1:</td>
<td>A1</td>
<td>A1</td>
<td>A0</td>
</tr>
<tr>
<td>Iteration 2:</td>
<td>A0</td>
<td>A1</td>
<td>A1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration 0:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iteration 1:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iteration 2:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$\frac{2}{3}$</td>
<td>0</td>
<td>$\frac{1}{3}$</td>
</tr>
</tbody>
</table>
Theoretical Explanation

- Model: Final outcome is a random variable (w) influenced by which subset of agents agreed (H_i)

Domain Independent Model
Experiments

- 691 games for each team
- Games played against a fixed adversary (Fuego)
- Performance evaluated using 5-fold cross validation
- On-line prediction compared with Fuego running 50× longer
 - ... and also with the actual final outcome
- Metrics: Accuracy, Precision, Recall
Results

High quality predictions for all teams!

Accuracy does not depend on the strength

S. Marcolino, Xia, Walsh (USC,RPI,UNSW) Social Choice in ACTION! May 4th, 2015 58 / 61
Every Team Deserves a Second Chance
An Interactive 9x9 Go Experience

AAMAS 2015 Demo
Thank you!

sorianom@usc.edu
http://teamcore.usc.edu/people/sorianom

