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In this note, we first describe the model of zero-sum security games, and show how the model and its com-
putation relate to many standard combinatorial optimization problems. Then we show how the model and
computation generalize to general-sum security games.

1 Zero-sum Security Games - A Unified View

The zero-sum security game is a two-player game played between a defender and an attacker. More precisely,
a zero-sum security game consists of the follows:

• Two players: a defender and an attacker.

• n targets (e.g., physical facilities or critical locations) to be protected, denoted by set [n].

• Set of defender pure strategies, denoted as E . We will use e(∈ E) to denote a generic pure strategy.
Crucially, any e can be viewed as a subset of [n], denoting the protected (a.k.a., covered) targets by this
pure strategy. In particular, the defender has multiple security resources; One pure strategy is a feasible
allocation of these resources – e is precisely the set of covered targets in this feasible resource allocation.

Equivalently, one can view e ∈ {0, 1}n as a binary vector where the value-1 entries specify the covered
targets. For convenience, we will use this representation throughout this note. A defender mixed strategy
is a distribution p ∈ ∆|E| over elements in E . Here ∆m = {p ∈ Rm :

∑m
i=1 pi = 1; pi ≥ 0} is the

m-dimensional simplex, consisting of all the (discrete) distributions over support of size m.

• Attacker pure strategies i ∈ [n], meaning that the attacker attacks target i.1 Like most of the literature,
here we assume the attacker can only attack one target. We use y ∈ ∆n to denote an attacker mixed
strategy where yi is the probability of attacking target i.

• Payoffs: if the attacker attacks any target i ∈ [n], the defender gets a reward ri if i is covered or a cost ci
otherwise. As standard, we assume ri > ci, i.e., protecting a target is beneficial for the defender.

Note that, the defender aims at maximizing her utility while the attacker aims at minimizing the defender’s
utility. The key structure of a security game is the set E of defender pure strategies. Consider a simple example
where the defender has k(< n) security resources, each of which can be assigned to protect any target. In this
case, any binary vector e ∈ {0, 1}n with at most k value-1 entries, denoting a subset of [n] with size at most k, is
a pure strategy (so |E| = Ω(nk) in this case). In practice, there are usually resource allocation constraints, thus
not all such subsets correspond to feasible resource allocations. The key difference among different security
game models lies at the structure of the set E . More (realistic) examples will be provided in Section 2. We
note that, the total number of pure strategies is usually extremely large, therefore computational efficiency in
security games means time polynomial in n, while not in |E|.

1In practice, the attacker can also choose to not attack. This can be incorporated into the current model by adding a dummy target.
Therefore, we will not explicitly consider the case.
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Marginal Probabilities. Given any defender mixed strategy p ∈ ∆|E|, the marginal coverage probability of
target i is

xi =
∑
e∈E

peei ∈ [0, 1]. (1)

where ei is the i’th entry of e. Let x = (x1, ..., xn)T denote the marginal probabilities of all targets induced
by the mixed strategy p. Notice that the marginal probabilities of a pure strategy e is precisely e itself,2 and
the convex hull of E , defined as P = {x : x =

∑
e∈E pe · e, ∀p ∈ ∆|E|}, consists of all the feasible (i.e.,

implementable by a defender mixed strategy) marginals.

Player Utilities. Given a defender mixed strategy p ∈ ∆|E|, let x ∈ Rn be the marginal probabilities induced
by p, as in Equation (1). Let y ∈ ∆n be any attacker mixed strategy. Then the defender’s expected utility can
be expressed in terms of x, y, as follows:

U(x,y) =
∑n

i=1 yi

(
ri · xi + ci · [1− xi]

)
, (2)

where ri · xi + ci · [1− xi] is precisely the defender’s expected utility conditioned on that the attacker attacks
target i. Note that, U(x,y) has the form xTAy + α · y for some non-negative diagonal matrix A, and is called
bilinear in x and y.

2 Security Games & Combinatorial Optimization

Interestingly, it turns out that security games have a very close connection to many combinatorial optimization
problems. In particular, we consider the following combinatorial problem.

Problem 2.1 (Defender Best Response (DBR)). For any non-negative weight vector w ∈ Rn
+, compute

e∗ = arg max
e∈E

[w · e].

The DBR problem over E is to compute arg maxe∈E [w · e] for any input w ∈ Rn
+.

In other words, the DBR problem is to compute a defender pure strategy that maximizes the total weights it
“collects”. We claim that Problem 2.1 is precisely the defender’s best response problem to an arbitrary attacker

mixed strategy. To see this, given any attacker mixed strategy y, we have U(x,y) =
∑n

i=1 xi

(
yi[ri − ci]

)
+∑n

i=1 yici for any x ∈ P . Let wi = yi[ri − ci] ≥ 0. Since the term
∑n

i=1 yici is not affected by the defender
strategy, the defender’s best response to y is arg maxx∈P x · w = arg maxe∈E e · w. Oppositely, given any
w ∈ Rn

+, it is easy to find an attacker mixed strategy y ∈ ∆n such that yi(ri − ci) is proportional to wi for all
i ∈ [n], making Problem 2.1 equivalent to the defender’s best response to y. Notice that the DBR problem is a
combinatorial optimization problem over the set system E . The difference among various security game models
essentially lies at the structure of E . In the following context, we illustrate how some typical DBR problems
relate to standard combinatorial problems.

Uniform Matroid. In simple security settings, the defender has a certain number of security resources, say k
resources; each resource can be assigned to protect any (one) target, i.e., there are no allocation constraints. As
a result, any subset of [n] of size at most k is a defender pure strategy. In this case, E is a uniform matroid and
the DBR problem is simply to find the largest k weights. The LAX airport security game system deployed in
2007 – one of the earliest applications of security games – is captured by this model [12].

2Here we assume security forces have perfect protection effectiveness. That is, once a target is covered, regardless by one or multiple
resources, it is fully protected with probability 1. One can also generalize this to nonperfect effectiveness.
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Bipartite Matching. A natural generalization of the uniform matroid case is that the resource allocation has
constraints. In this case, the defender has k heterogeneous resources, and each resource can only be allocated
to some particular targets associated with that resource. This naturally models several types of scheduling
constraints in practice. For example, due to geographic constraints, policemen from a certain police station can
only patrol the area around that station. Also, different types of security forces specialize in protecting different
types of targets. The feasibility constraints can be modeled as edges of a bipartite graph with security resources
on one side and targets on another side; A resource can be assigned to a target if and only if there exists an edge
between them in the bipartite graph. Any defender pure strategy corresponds to a bipartite matching and the
DBR problem is to compute the maximum weighted bipartite matching.

Coverage Problem. In some domains, one security resource can cover several targets. One deployed real
example is the scheduling problem of the federal air marshals, where one air marshal is scheduled to protect
several flights, but constrained on that the arrival destination of any former flight should be the starting point of
the next flight [15]. In other words, each security resource (i.e., air marshal) can protect a restricted subset of
targets (i.e., flights). As a result, each pure strategy is the union of targets covered by each security resource.
The DBR problem in this case is the maximum weighted coverage problem. Another natural example is to
protect targets distributed on the plane and each security guard can cover a region of certain size. The DBR
problem here is a 2-dimensional geometric maximum coverage problem.3 Other examples include patrolling
on a graph (e.g., street graph of a city or network systems) in which a patroller at a node can protect all the
adjacent edges or a patroller on an edge can protect its two end nodes. The DBR problem here is the vertex or
edge coverage problem.

Min-Cost Flow. Many security games are played out in both space and time, which is also referred as spatio-
temporal security games. For example, the deployed security system in [6] helps to schedule the patrol boats of
US Coast Guard to protect the (moving) Staten Island ferries during the day time. Conservation area patrolling
for protecting wildlife is another example [7]. One common way to handle such settings is to discretize the
space to build a 2-D – spatial and temporal dimension – grid, and patrol the discrete (space, time) points (see
Figure 1). The constraint here is that starting from a position at time t, the positions that a security resource
can possibly reach at time t + 1 are restricted due to various constraints like speed limit, terrain barriers, etc.
For example, the move highlighted by red in Figure 1 is infeasible since the patroller can not move to the end
within a small time period due to speed limit, while the blue-colored moves are feasible. This can be modeled
by adding edges between time layers to indicate feasible moves. The patrolling schedule for each security
resource corresponds to a path across all time layers, which specifies the target this resource covers at each time
point (see the blue path in Figure 1). The DBR problem is, for any given non-negative weights at each (space,
time) point, computing k paths for the k resources to maximize the total weights they cover. This can be solved
by adding a super source and sink to the graph, and then computing a k-unit min-cost integer flow with negative
costs.

Packing. Our last example is motivated by recent work to optimize the allocation of security resources for
passenger screening for the Transportation Security Administration (TSA) in United States [3]. Consider an
airport with n flights and flight i has mi passengers. The TSA has several screening tools, e.g., x-ray, walk-
through metal detector, chemicals, etc., and each screening tool has a capacity of the maximum number of
passengers it can check. Opposite from the coverage case where each resource can protect several targets, here
several tools are needed to screen one passenger. More precisely, each passenger is screened by a screening
team which is a combination of several screening tools. By attacking flight i we mean the attacker becomes a
passenger for that flight (i.e., bought its ticket), and brings attack equipments with him. By protecting the flight
from a certain passenger we mean that passenger is screened, and identified as an attacker if he is, by a screening
team.4 The DBR problem is to, given non-negative weight wi for all passengers in any flight i, allocate as many
passengers as possible to teams for screening, subject to each screening tool’s capacity constraint, so that the
total weights of screened passengers are maximized. This is a very general packing problem. In fact, the reader

3For more information about geometric coverage, see the thesis [8] by Leeuwen and the references therein.
4In [3], each screening team has an effectiveness factor denoting the probability a team can identify an attacker. The setting here is

slightly simplified with perfect effectiveness factor 1. Nevertheless, it still captures the core difficulty of the problem.
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Figure 1: Feasible (blue) and Infeasible (red) Moves in Discretized Spatio-Temporal Games.

may easily check that when wi = 1 and mi = 1 for any flight i, the problem encodes a vertex packing (i.e.,
independent set) problem.

Remark 2.2. We note that the examples above do not represent all the settings of security games. For example,
there is also study on budget constraints for acquiring security resources (e.g., [1]), which induces the budgeted
version of the above combinatorial problems (e.g., the uniform matroid case becomes a Knapsack problem).
In fact, real domains are usually more complicated with various types of constraints, involving intersections of
these combinatorial structures. Nevertheless, the combinatorial nature of these problems does not change and
the DBR problem still has the same form as defined in Problem 2.1.

3 Solving Zero-Sum Security Games is a Combinatorial Problem

We are interested in solving zero-sum security games over E , by which we mean all zero-sum games with valid
payoff structures, but a fixed set E of defender pure strategies. It is well-known that in zero-sum games, all the
standard equilibrium concepts are payoff-equivalent to the well-known minimax equilibrium, and our goal is to
efficiently compute the minimax equilibrium for security games over E in poly(n) time. The following theorem
shows that, computing the minimax equilibrium in zero-sum security games is computationally equivalent (in
polynomial-time sense) to the DBR problem.

Theorem 3.1. [16] There is a poly(n) time algorithm to compute the minimax equilibrium for zero-sum security
games over E , if and only if there is a poly(n) time algorithm to solve the DBR problem over E .

There has been a belief in the literature on the possibility of solving security games without going through the
DBR problem. Indeed, various other techniques have been employed to tackle security games, e.g., generalized
Birkhoff-von Neumann theorem [4], various techniques from convex and non-convex optimization as well as
heuristics. Interestingly, the key message conveyed by Theorem 3.1 is that to solve security games, one cannot
avoid solving, and also only needs to solve, the DBR problem, if polynomial time efficiency is concerned.

By convention, we will call an algorithm for solving the DBR problem a DBR Oracle.5 The proof of Theorem
3.1 is theoretical and relatively involved. We refer the reader to [16] for a formal proof. However, we do
note that, the theoretical reductions in [16] can be practically “implemented” using the techniques of column
generation. Though the running time of the implementation is not guaranteed to be polynomial (which is why
we quoted “implement”), it usually runs efficiently in practice and is widely used within the operation research

5This is also called defender oracle in some context.
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community. In order to gain some intuitions about Theorem 3.1, in the following context, we will briefly
illustrate one direction of the theorem, i.e., how to compute the minimax equilibrium using a DBR oracle.

The Minimax Equilibrium Formulation

It is well-known that the minimax equilibrium consists of the defender’s maximin strategy and the attacker’s
minimax strategy. We start from computing the defender’s maximin strategy. Let variable p ∈ ∆|E| be the
defender’s mixed strategy and variable x ∈ [0, 1]n be the marginal coverage probability determined by p
as defined in Equation (1). Assuming an adversarial attacker, the defender maximizes her worst-case utility,
denoted by variable u. Then p, x and u can be computed by the following linear program.

maximize u
subject to xiri + (1− xi)ci ≥ u, for i = 1, 2, ..., n.∑

e∈E pe · e = x∑
e∈E pe = 1

pe ≥ 0, for e ∈ E .

(3)

Reducing Minimax Equilibrium to DBR

We show that LP (3) can be computed in poly(n) time if the DBR problem over E admits a poly(n) time
algorithm. LP (3) has exponentially many variables but polynomially many constraints. We instead consider
the following dual program of LP (3) with variables r and wi, yi for all i ∈ [n].

minimize
∑n

i=1 ciyi + r
subject to r − e ·w ≥ 0, for e ∈ E .

(ri − ci)yi = wi, for i = 1, 2, ..., n.∑n
i=1 yi = 1

yi ≥ 0, for i = 1, 2, ..., n.

(4)

We note that the optimal {yi}i∈[n] of LP (4) is precisely the attacker’s minimax strategy. Let polytope

Q = {(r,w,y) : r ∈ R, w,y ∈ Rn are feasible for LP (4) } (5)

be all the feasible solutions for LP (4). The key observation here is that, given any (r,w,y), we can check
whether (r,w,y) is in Q or not, and if not, we can find a hyperplane to separate the given (r,w,y) from Q.6

To see this, given any r and wi, yi for i ∈ [n], we can explicitly check the last three constraints in LP (4)
in poly(n) time. To check whether they satisfy the first constraint, we run the DBR oracle which outputs a
pure strategy e∗. If r < e∗ · w, then the first constraint is violated at e = e∗, which also gives a hyperplane
r − e∗ · w = 0 that separates (r,w,y) from Q. Otherwise, r ≥ e∗ · w = maxe∈E ≥ e · w for any e ∈ E .
Therefore, the first constraint is satisfied. It turns out that such ability of separation will not only allow us to
theoretically solve both LP (4) and (3) in polynomial time, but also gives a practical implementation using
column generation to solve both LPs.

4 General-sum Security Games – Stackelberg and Nash

We now briefly mention how the results in Section 3 generalize to general-sum security games. A general-sum
security game basically has the same structure as the zero-sum version, except that the attacker now has his own

6For any polytope P ⊆ Rn, a hyperplane a · x = b separates x0 ∈ Rn from P , if a · x0 < b and a · x ≥ b for any x ∈ P . Notice
that such separation naturally implies x0 6∈ P .
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utilities on each target depending on its protection status, and the attacker seeks to maximize his own expected
utility. Particularly, characterization of the defender’s pure strategy set E and the DBR problem keep the same.
The main solution concept adopted in literature is the Strong Stackelberg Equilibrium (SSE) – the defender is
the leader. This is motivated by the consideration that the attacker usually does surveillance before committing
an attack, thus is able to observe the empirical distribution of the defender’s patrolling strategy. In this case, our
goal is to compute the optimal mixed strategy for the defender to commit to.

However, in many cases the attacker does little surveillance. In fact, sometimes even the attacker intends to
do surveillance, he cannot observe the defender’s strategies due to limited attacker resources and, sometimes,
confidentiality of the defender’s resource allocation (e.g., plainclothes police). In these settings, the defender
cannot commit to a strategy,7 thus Nash Equilibrium (NE) serves as a more appropriate solution concept.
Simultaneous-move security game models are particularly common for modeling interactions with terrorism,
partially due to the fact that the defender’s actions are usually confidential in such settings (see, e.g., [9, 13, 14,
2]). In networked information systems, the interaction between the defender (system protector) and attacker
(malware) is usually modeled as a simultaneous-move security game as well since malwares do not analyze
system’s history behaviors, and the goal is to compute some particular (e.g., best or worst) NE [11, 10].

It turns out that similar results as the zero-sum cases hold, as stated in the following two theorems. Furthermore,
computing these equilibria can be implemented by column generation techniques as well. For Nash equilibrium,
we can not only compute one NE (NEs are not unique in games), but also compute the best or worst NE (in
terms of the defender utility). Note that for general normal-form 2-player games, it is NP-hard to maximize a
player’s Nash equilibrium utility [5].

Theorem 4.1. [16] There is a poly(n) time algorithm to compute the Strong Stackelberg equilibrium for secu-
rity games over E , if and only if there is a poly(n) time algorithm to solve the DBR problem over E .

Theorem 4.2. [16] There is a poly(n) time algorithm to compute the best and worst (for the defender) Nash
equilibrium for security games over E , if and only if there is a poly(n) time algorithm to solve the DBR
problem over E . Here, by “best/worst” we mean the NE that maximizes/minimizes the defender’s utility.

5 Take-Aways

First, the complexity of a security game is fully captured by the set system E , as summarized in the following
corollary of Theorem 3.1, 4.1 and 4.2. Therefor, it should only be a modeling choice, while not the computa-
tional concern, about which equilibrium concept to pick in real applications.

Corollary 5.1. For any set system E , the following four problems reduce to each other in polynomial time:
(1) Combinatorial optimization over E for non-negative linear objectives; (2) Solving zero-sum security games
over E; (3) Computing Strong Stackelberg equilibrium for security games over E; (4) Computing best/worst
(for the defender) Nash equilibrium for security games over E .

Second, Corollary 5.1 should guide our algorithm design in concrete applications. By examining the DBR prob-
lem, we can get a rough sense about how difficult the presented security game is, and what kind of algorithms
can we hope for.

Finally, Corollary 5.1 provides a more convenient way for us to theoretically prove the computational complex-
ity of security games, since the complexity of DBR problem is much easier to analyze. In fact, Corollary 5.1
simultaneously implies the computational complexity for solving various types of security games. For example,
when E is any matroid set system or when the optimization over E has a min-cost flow formulation, the equi-
librium can be computed efficiently. On the other hand, when the optimization over E is a coverage problem or
packing problem, the equilibrium computation for these security games is NP-hard in general.

7Technically, the defender can still commit to play some strategy. However, the attacker cannot observe or verify the defender’s strategy,
making the commitment not effective.
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