Multidimensional Comparison of Project-Based Learning Programs

Elizabeth Bondi
Briana Neuberger
Megan Iafrati
Joe Pow

Chester F. Carlson Center for Imaging Science
Rochester Institute of Technology
Rochester, NY
Motivation: Freshman Imaging Project
Goal

- Create a tool to compare project-based courses
- Provide common language to discuss these topics
Outline

1. Previous Research
2. Dimensions
3. Rubric
4. Examples
5. Space
6. Equation
7. Future Work
8. Summary
Outline

1. Previous Research
2. Dimensions
3. Rubric
4. Examples
5. Space
6. Equation
7. Future Work
8. Summary
Dimensions

• Power Distribution
• Multi-Disciplinary
• Utilization of Time
• Evaluation
• Size of Class
• Interaction Between Students
• Equipment/Materials
Outline

1. Previous Research
2. Dimensions
3. Rubric
4. Examples
5. Space
6. Equation
7. Future Work
8. Summary
<table>
<thead>
<tr>
<th>Dimensions</th>
<th>1 (Traditional)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 (Non-traditional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Distribution</td>
<td>All power is held by the instructor.</td>
<td>The instructor holds most of the power but students hold a little influence.</td>
<td>Power is distributed evenly between students and instructor.</td>
<td>Students mostly control the class but the instructor still has control.</td>
<td>Power is in the hands of the students. The instructor acts as an advisor and resource.</td>
</tr>
<tr>
<td>Multi-Disciplinary</td>
<td>Only spans one main discipline.</td>
<td>Can be applied to a couple of disciplines.</td>
<td>Spans a few related disciplines.</td>
<td>Spans many disciplines but in limited ways.</td>
<td>Spans multiple disciplines.</td>
</tr>
<tr>
<td>Utilization of Time</td>
<td>Time is spent in lecture alone.</td>
<td>Most time is spent in lecture with the occasional lab or group activity.</td>
<td>Time is split somewhat evenly between lab/project time (e.g., lab period) and lecture.</td>
<td>The majority of class time is spent doing labs or a large project but there are still lectures.</td>
<td>No strict schedule exists and class is used to get work completed.</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Students are graded using assessments (especially exams) and homework.</td>
<td>Grades are based on assessments (mostly exams, few projects) and homework with some consideration of effort.</td>
<td>Students are graded with exams, projects, and homework as well as a consideration of effort.</td>
<td>Grades take effort into account and may include project and/or homework grades. Few if any exams.</td>
<td>Grades are based on how much effort students put into the class/projects. Basically no exams or homework.</td>
</tr>
<tr>
<td>Size of Class</td>
<td>Classes are large and impersonal (e.g., large lecture hall).</td>
<td>Classes are typically large but there is some personalized attention.</td>
<td>Medium class size with some personalized instruction.</td>
<td>Classes are typically small with close student-teacher relationships.</td>
<td>Class sizes are small with close student-teacher relationships.</td>
</tr>
<tr>
<td>Interaction Between Students</td>
<td>Small amount of interactions. Little to no group work.</td>
<td>Students occasionally interact with each other in class.</td>
<td>Students interact regularly within class.</td>
<td>Students interact regularly in class and sometimes out of class.</td>
<td>Constant interaction between students inside and outside of class.</td>
</tr>
<tr>
<td>Equipment/Materials</td>
<td>Textbooks and manuals are the materials needed for the course.</td>
<td>Textbooks and manuals are needed as well as a few lab pieces.</td>
<td>Textbook and lab equipment is needed for this course.</td>
<td>Lab materials and project-specific materials are used.</td>
<td>Most of the materials are project-specific and purchased throughout.</td>
</tr>
</tbody>
</table>

Outline

1. Previous Research
2. Dimensions
3. Rubric
4. Examples
5. Space
6. Equation
7. Future Work
8. Summary
Examples

• Colorado School of Mines
 o EPICS (Engineering Practices Introductory Course Sequence)

• Drexel University
 o Freshman Design I & II
 o Freshman Design III

• University of Michigan
 o Solar Cells: Renewable Energy
 o Underwater Vehicle Design

• Rochester Institute of Technology (RIT)
 o Freshman Imaging Project

• Western New England University (WNE)
 o Introduction to Engineering
Outline

1. Previous Research
2. Dimensions
3. Rubric
4. Examples
5. Space
6. Equation
7. Future Work
8. Summary
Outline

1. Previous Research
2. Dimensions
3. Rubric
4. Examples
5. Space
6. Equation
7. Future Work
8. Summary
Characteristic Equation

\[d = \left[(a_1 - b_1)^2 + (a_2 - b_2)^2 + \ldots + (a_7 - b_7)^2 \right]^{\frac{1}{2}} \]

University of Michigan (Underwater Section) vs. Rochester Institute of Technology

\[d = 3.0 \]

Western New England University vs. Rochester Institute of Technology

\[d = 7.2 \]
Outline

1. Previous Research
2. Dimensions
3. Rubric
4. Examples
5. Space
6. Equation
7. Future Work
8. Summary
Future Work

- Online database of programs
 - Schools can discuss their own projects
 - All can be mapped onto the space and compared

- More interactive representation of multidimensional space (Java script)
Outline

1. Previous Research
2. Dimensions
3. Rubric
4. Examples
5. Space
6. Equation
7. Future Work
8. Summary
Summary

- Created a tool to compare non-traditional classes
- Mapped several examples onto multidimensional space using tool
- Compared two programs quantitatively with the distance equation
Questions?