
Making the most of Our Regrets: Regret-based
Solutions to Handle Payoff Uncertainty and Elicitation

in Green Security Games

Thanh H. Nguyen1, Francesco M. Delle Fave1, Debarun Kar1, Aravind S.
Lakshminarayanan2, Amulya Yadav1, Milind Tambe1, Noa Agmon3, Andrew J.

Plumptre4, Margaret Driciru5, Fred Wanyama5, and Aggrey Rwetsiba5

1 University of Southern California, Los Angeles, USA
[thanhhng,dellefav,dkar,amulyaya,tambe]@usc.edu

2 Indian Institute of Technology, Madras, India
aravindsrinivas@gmail.com

3 Bar-Ilan University, Israel
agmon@cs.biu.ac.il

4 Wildlife Conservation Society, USA
aplumptre@wcs.org

5 Uganda Wildlife Authority, Uganda
[margaret.driciru,fred.wanyama,aggrey.rwetsiba]@ugandawildlife.org

Abstract. Recent research on Green Security Games (GSG), i.e., security games
for the protection of wildlife, forest and fisheries, relies on the promise of an
abundance of available data in these domains to learn adversary behavioral mod-
els and determine game payoffs. This research suggests that adversary behavior
models (capturing bounded rationality) can be learned from real-world data on
where adversaries have attacked, and that game payoffs can be determined pre-
cisely from data on animal densities. However, previous work has, as yet, failed
to demonstrate the usefulness of these behavioral models in capturing adversary
behaviors based on real-world data in GSGs. Previous work has also been unable
to address situations where available data is insufficient to accurately estimate
behavioral models or to obtain the required precision in the payoff values.

In addressing these limitations, as our first contribution, this paper, for the first
time, provides validation of the aforementioned adversary behavioral models based
on real-world data from a wildlife park in Uganda. Our second contribution ad-
dresses situations where real-world data is not precise enough to determine exact
payoffs in GSG, by providing the first algorithm to handle payoff uncertainty
in the presence of adversary behavioral models. This algorithm is based on the
notion of minimax regret. Furthermore, in scenarios where the data is not even
sufficient to learn adversary behaviors, our third contribution is to provide a novel
algorithm to address payoff uncertainty assuming a perfectly rational attacker (in-
stead of relying on a behavioral model); this algorithm allows for a significant
scaleup for large security games. Finally, to reduce the problems due to paucity
of data, given mobile sensors such as Unmanned Aerial Vehicles (UAV), we in-
troduce new payoff elicitation strategies to strategically reduce uncertainty.



2

1 Introduction

Following the successful deployments of Stackelberg Security Games (SSG) for infras-
tructure protection [24, 1, 13], recent research on security games has focused on Green
Security Games (GSG) [27, 4, 21, 7]. Generally, this research attempts to optimally allo-
cate limited security resources in a vast geographical area against environmental crime,
e.g., improving the effectiveness of protection of wildlife or fisheries [27, 4].

Research in GSGs has differentiated itself from work in SSGs (which often focused
on counter-terrorism), not only in terms of the domains of application but also in terms
of the amounts of data available. In particular, prior research on SSGs could not claim
the presence of large amounts of adversary data [24]. In contrast, GSGs are founded on
the promise of an abundance of adversary data (about where the adversaries attacked in
the past) that can be used to accurately learn adversary behavior models which capture
their bounded rationality [27, 4, 7]. Furthermore, GSG research assumes that available
domain data such as animal/fish density is sufficient to help determine payoff values
precisely. However, there remain four key shortcomings in GSGs related to these as-
sumptions about data. First, despite proposing different adversary behavioral models
(e.g., Quantal Response [28]), GSG research has yet to evaluate these models on any
real-world data. Second, the amount of real-world data available is not always present in
abundance, introducing different types of uncertainties in GSGs. In particular, in some
GSG domains, there is a significant need to handle uncertainty in both the defender
and the adversary’s payoffs since information on key domain features, e.g., animal den-
sity, terrain, etc. that contribute to the payoffs is not precisely known. Third, in some
GSG domains, we may even lack sufficient attack data to learn an adversary behavior
model, and simultaneously must handle the aforementioned payoff uncertainty. Finally,
defenders have access to mobile sensors such as UAVs to elicit information over mul-
tiple targets at once to reduce payoff uncertainty, yet previous work has not provided
efficient techniques to exploit such sensors for payoff elicitation [17].

In this paper, we address these challenges by proposing four key contributions. As
our first contribution, we provide the first results demonstrating the usefulness of behav-
ioral models in SSGs using real-world data from a wildlife park. To address the second
limitation of uncertainty over payoff values, our second contribution is ARROW (i.e.,
Algorithm for Reducing Regret to Oppose Wildlife crime), a novel security game algo-
rithm that can solve the behavioral minimax regret problem. MiniMax Regret (MMR) is
a robust approach for handling uncertainty that finds the solution which minimizes the
maximum regret (i.e., solution quality loss) with respect to a given uncertainty set [8].
A key advantage of using MMR is that it produces less conservative solutions than the
standard maximin approach [17]. ARROW is the first algorithm to compute MMR in
the presence of an adversary behavioral model; it is also the first to handle payoff uncer-
tainty in both players’ payoffs in SSGs. However, jointly handling of adversary bounded
rationality and payoff uncertainty creates the challenge of solving a non-convex opti-
mization problem; ARROW provides an efficient solution to this problem. (Note that
we primarily assume a zero-sum game as done in some prior GSG research; however
as discussed our key techniques generalize to non-zero sum games as well.)

Our third contribution addresses situations where we do not even have data to learn
a behavior model. Specifically, we propose ARROW-Perfect, a novel MMR-based al-



3

gorithm to handle uncertainty in both players’ payoffs, assuming a perfectly rational
adversary without any requirement of data for learning. ARROW-Perfect exploits the
adversary’s perfect rationality as well as extreme points of payoff uncertainty sets to
gain significant additional efficiency over ARROW.

Another significant advantage of MMR is that it is very useful in guiding the prefer-
ence elicitation process for learning information about the payoffs [3]. We exploit this
advantage by presenting two new elicitation heuristics which select multiple targets at a
time for reducing payoff uncertainty, leveraging the multi-target-elicitation capability of
sensors (e.g., UAVs) available in green security domains. Lastly, we conduct extensive
experiments, including evaluations of ARROW based on data from a wildlife park.

2 Background & Related Work

Stackelberg Security Games: In SSGs, the defender attempts to protect a set of T
targets from an attack by an adversary by optimally allocating a set ofR resources (R <
T ) [24]. The key assumption here is that the defender commits to a (mixed) strategy
first and the adversary can observe that strategy and then attacks a target. Denote by
x={xt} the defender’s strategy where xt is the coverage probability at target t, the set
of feasible strategies is X = {x : 0 ≤ xt ≤ 1,

∑
t xt ≤ R}.6 If the adversary attacks t

when the defender is not protecting it, the adversary receives a reward Rat , otherwise,
the adversary gets a penalty P at . Conversely, the defender receives a penalty P dt in the
former case and a rewardRdt in the latter case. Let (Ra,Pa) and (Rd,Pd) be the payoff
vectors. The players’ expected utilities at t is computed as:

Ua
t (x,R

a,Pa) = xtP
a
t + (1− xt)Rat (1)

Ud
t (x,R

d,Pd) = xtR
d
t + (1− xt)P dt (2)

Boundedly rational attacker: In SSGs, attacker bounded rationality is often modeled
via behavior models such as Quantal Response (QR) [14, 15]. QR predicts the adver-
sary’s probability of attacking t, denoted by qt(x,R

a,Pa) (as shown in Equation 3
where the parameter λ governs the adversary’s rationality). Intuitively, the higher the
expected utility at a target is, the more likely that the adversary will attack that target.

qt(x,R
a,Pa) =

eλU
a
t (x,R

a,Pa)∑
t′ e

λUa
t′ (x,R

a,Pa)
(3)

The recent SUQR model (Subjective Utility Quantal Response) is shown to provide the
best performance among behavior models in security games [18]. SUQR builds on the
QR model by integrating the following subjective utility function into QR instead of the
expected utility:

Ûa
t (x,R

a,Pa) = w1xt + w2R
a
t + w3P

a
t (4)

6 The true mixed strategy would be a probability assignment to each pure strategy, where a pure
strategy is an assignment of R resources to T targets. However, that is equivalent to the set X
described here, which is a more compact representation [12].



4

where (w1, w2, w3) are parameters indicating the importance of the three target features
for the adversary. The adversary’s probability of attacking t is then predicted as:

q̂t(x,R
a,Pa) =

eÛ
a
t (x,R

a,Pa)∑
t′ e

Ûa
t (x,R

a,Pa)
(5)

In fact, SUQR is motivated by the lens model which suggested that evaluation of adver-
saries over targets is based on a linear combination of multiple observable features [5].
One key advantage of these behavioral models is that they can be used to predict attack
frequency for multiple attacks by the adversary, wherein the attacking probability is a
normalization of attack frequency.
Payoff uncertainty: One key approach to modeling payoff uncertainty is to express
the adversary’s payoffs as lying within specific intervals [10]: for each target t, we
have Rat ∈ [Ramin(t), R

a
max(t)] and P at ∈ [P amin(t), P

a
max(t)]. Let I denote the set

of payoff intervals at all targets. An MMR-based solution was introduced in previous
work to address payoff uncertainty in SSGs; yet it had two weaknesses: (i) this MMR-
based solution is unable to handle uncertainty in both players’ payoffs since it assumes
that the defender’s payoffs are exactly known; and (ii) it has failed to address payoff
uncertainty in the context of adversary behavioral models [17].
Green security games: This paper focuses on wildlife protection — many species
such as rhinos and tigers are in danger of extinction from poaching [16, 22]. To protect
wildlife, game-theoretic approaches have been advocated to generate ranger patrols [27]
wherein the forest area is divided into a grid where each cell is a target. These ranger pa-
trols are designed to counter poachers (whose behaviors are modeled using SUQR) that
attempt to capture animals by setting snares. A similar system has also been developed
for protecting fisheries [4]. Unfortunately, this previous work in wildlife protection [27]
has four weaknesses as discussed in Section 1.

3 Behavioral Modeling Validation

Our first contribution addresses the first limitation of previous work mentioned in Sec-
tion 1: understanding the extent to which existing behavior models capture real-world
behavior data from green security domains. We used a real-world patrol and poaching
dataset from Uganda Wildlife Authority supported by Wildlife Conservation Society.
This dataset was collected from 1-year patrols in the Queen Elizabeth national park.7

3.1 Dataset Description

Our dataset had different types of observations (poacher sighting, animal sighting,
etc.) with 40, 611 observations in total recorded by rangers at various locations in the
park. The latitude and longitude of the location corresponding to each observation was
recorded using a GPS device, thus providing reliable data. Each observation has a fea-
ture that specified the total count of the category of observation recorded, for example,

7 This is the preliminary work on modeling poachers’ behaviors. Further study on building more
complex behavioral models would be a new interesting research topic for future work.



5

(a) All Models (b) ε-optimal (various values of ε) vs SUQR-4

Fig. 1. ROC plots on Uganda dataset

number and type of animals sighted or poaching attacks identified, at a particular lo-
cation. The date and time for a particular patrol was also present in the dataset. We
discretized the park area into 2423 grid cells, with each grid cell corresponding to a
1km× 1km area within the park. After the discretization, each observation fell within
one of the 2423 target cells and we therefore aggregated the animal densities and the
number of poaching attacks within each target cell. We considered attack data from the
year 2012 in our analysis, which has 2352 attacks in total.
Gaussian smoothing of animal densities: Animal density at each target is computed
based on the patrols conducted by the rangers and are thus observations at a particular
instant of time. Animal density also has a spatial component, meaning that it is unlikely
to change abruptly between grid cells. Therefore, to account for movement of animals
over a few kilometers in general, we do a blurring of the current recording of animal
densities over the cells. To obtain the spatial spread based on recordings of animal
sightings, we use Gaussian smoothing; more specifically we use a Gaussian Kernel of
size 5× 5 with σ = 2.5 to smoothen out the animal densities over all the grid cells.
Distance as a feature: In addition to animal density, the poachers’ payoffs should take
into account the distance (or effort) the poacher takes in reaching the grid cell. There-
fore, we also use distance as a feature of our SUQR models. Here, the subjective utility
function (Equation 4) is extended to include the distance feature: Ûa

t (x,R
a,Pa) =

w1xt + w2R
a
t + w3P

a
t + w4Φt where Φt is the distance from the attacker current po-

sition to target t. For calculating distance, we took a set of 10 entry points based on
geographical considerations. The distance to each target location is computed as the
minimum over the distances to this target from the 10 entry points.

3.2 Learning Results

We compare the performance of 13 behavioral models8 as follows (Figure 1): (i) SUQR-
3, which corresponds to SUQR with three features (coverage probability as discussed

8 Models involving cognitive hierarchies [26] are not applicable in Stackelberg games given that
attacker plays knowing the defender’s actual strategy.



6

in Section 2, poacher reward which is considered to be same as the animal density and
poacher penalty which is kept uniform over all targets); (ii) SUQR-4, which corresponds
to SUQR with four features (coverage probability, animal density, poacher penalty and
distance to the target location); (iii) QR; (iv) eight versions of the ε-optimal model, a
bounded rationality model [20] where the adversary chooses to attack any one of the
targets with an utility value which is within ε of the optimal target’s utility, with equal
probability; (v) a random adversary model; and (vi) a perfectly rational model.

From the 2352 total attacks in our dataset, we randomly sampled (10 times) 20%
of the attack data for testing and trained the three models: SUQR-3, SUQR-4 and QR
on the remaining 80% data. For each train-test split, we trained our behavioral models
to learn their parameters, which are used to get probabilities of attack on each grid cell
in the test set. Thus, for each grid cell, we get the actual label (whether the target was
attacked or not) along with our predicted probability of attack on the cell. Using these
labels and the predicted probabilities, we plotted a Receiver Operating Characteristic
(ROC) curve (in Figure 1) to analyze the performance of the various models.

The result shows that the perfectly rational model, that deterministically classifies
which target gets attacked (unlike SUQR/QR which give probabilities of attack on all
targets), achieves an extremely poor prediction accuracy. We also observe that the ε∗-
optimal model performs worse than QR and SUQR models (Figure 1(a)). Here, by
ε∗-optimal model, we mean the model corresponding to the ε that generates the best
prediction (Figure 1(b)). In our case, the best value of ε is 250. For the ε-optimal model,
no matter what ε we choose, the curves from the ε-optimal method never gets above the
SUQR-4 curve, demonstrating that SUQR-4 is a better model than ε-optimal. Further-
more, SUQR-4 (Area Under the Curve (AUC) = 0.73) performs better than both QR
(AUC = 0.67) and SUQR-3 (AUC = 0.67), thus highlighting the importance of distance
as a feature in the adversary’s utility. Thus, SUQR-4 provides the highest prediction
accuracy and thus will be our model of choice in the rest of the paper.

In summary, comparing many different models shows for the first time support for
SUQR from real-world data in the context of GSGs. The SUQR-4 model convincingly
beats QR, ε−optimal, perfect-rationality and the random model, thus showing the va-
lidity of using SUQR in predicting adversary behaviors in GSGs.

4 Behavioral Minimax Regret (MMRb)

While we can learn a behavioral model from real-world data, we may not always have
access to data to precisely compute animal density. For example, given limited num-
bers of rangers, they may have patrolled and collected wildlife data from only a small
portion of a national park, and thus payoffs in other areas of the park may remain uncer-
tain. Also, due to the dynamic changes (e.g., animal migration), players’ payoffs may
become uncertain in the next season. Hence, this paper introduces our new MMR-based
robust algorithm, ARROW, to handle payoff uncertainty in GSGs, taking into account
adversary behavioral models. Here, we primarily focus on zero-sum games as motivated
by recent work in green security domains [9, 4], and earlier major SSG applications
that use zero-sum games [23, 29]). In addition, we use a model inspired by SUQR-4
as the adversary’s behavioral model, given its high prediction accuracy presented in



7

Section 3. More specifically, the subjective utility function in Equation (4) is extended
to: Ûa

t (x,R
a,Pa) = w1xt + w2R

a
t + w3P

a
t + w4Φt where Φt is some other feature

(e.g., distance) of target t. In fact, our methods generalize to non-zero-sum games with
a general class of QR (see Online Appendix A).9

We now formulate MMRb with uncertain payoffs for both players in zero-sum SSG
with a boundedly rational attacker.

Definition 1. Given (Ra,Pa), the defender’s behavioral regret is the loss in her utility
for playing a strategy x instead of the optimal strategy, which is represented as follows:

Rb(x,R
a,Pa) = max

x′∈X
F(x′,Ra,Pa)− F(x,Ra,Pa) (6)

where F(x,Ra,Pa) =
∑

t
q̂t(x,R

a,Pa)Ud
t (x,R

d,Pd) (7)

Behavioral regret measures the distance in terms of utility loss from the defender strat-
egy x to the optimal strategy given the attacker payoffs. Here, F(x,Ra,Pa) is the
defender’s utility (which is non-convex fractional in x) for playing x where the at-
tacker payoffs, whose response follows SUQR, are (Ra,Pa). The defender’s payoffs
in zero-sum games are Rd = −Pa and Pd = −Ra. In addition, the attacking prob-
ability, q̂t(x,Ra,Pa), is given by Equation 5. When the payoffs are uncertain, if the
defender plays a strategy x, she receives different behavioral regrets w.r.t to different
payoff instances within the uncertainty intervals. Thus, she could receive a behavioral
max regret which is defined as follows:

Definition 2. Given payoff intervals I, the behavioral max regret for the defender to
play a strategy x is the maximum behavioral regret over all payoff instances:

MRb(x, I) = max
(Ra,Pa)∈I

Rb(x,R
a,Pa) (8)

Definition 3. Given payoff intervals I, the behavioral minimax regret problem at-
tempts to find the defender optimal strategy that minimizes the MRb she receives:

MMRb(I) = min
x∈X

MRb(x, I) (9)

Intuitively, behavorial minimax regret ensures that the defender’s strategy minimizes
the loss in the solution quality over the uncertainty of all possible payoff realizations.

Example 1. In the 2-target zero-sum game as shown in Table 1, each target is as-
sociated with uncertainty intervals of the attacker’s reward and penalty. For exam-
ple, if the adversary successfully attacks Target 1, he obtains a reward which belongs
to the interval [2, 3]. Otherwise, he receives a penalty which lies within the interval
[−2, 0]. The attacker’s response, assumed to follow SUQR, is defined by the parame-
ters (w1 = −10.0, w2 = 2.0, w3 = 0.2, w4 = 0.0). Then the defender’s optimal mixed
strategy generated by behavioral MMR (Equation 9) corresponding to this SUQR model
is x = {0.35, 0.65}. The attacker payoff values which give the defender the maximum
regret w.r.t this behavioral MMR strategy are (3.0, 0.0) and (5.0,−10.0) at Target 1

9 Online Appendix: https://www.dropbox.com/s/620aqtinqsul8ys/Appendix.pdf?dl=0



8

Table 1. A 2-target, 1-resource game.

Targets Attacker reward. Attacker penalty.
1 [2, 3] [-2, 0]
2 [5, 7] [-10, -9]

Algorithm 1: ARROW Outline
1 Initialize S = φ, ub = ∞, lb = 0 ;
2 Randomly generate sample (x′,Ra,Pa), S = S ∪ {x′, (Ra,Pa)};
3 while ub > lb do
4 Call R.ARROW to compute relaxed MMRb w.r.t S. Let x∗ be its optimal solution

with objective value lb;
5 Call M.ARROW to compute MRb(x

∗, I). Let the optimal solution be
(x′,∗,Ra,∗,Pa,∗) with objective value ub;

6 S = S ∪ {x′,∗,Ra,∗,Pa,∗};

7 return (lb,x∗);

and 2 respectively. In particular, the defender obtains an expected utility of −0.14 for
playing x against this payoff instance. On the other hand, she would receive a utility of
2.06 if playing the optimal strategy x′ = {0.48, 0.52} against this payoff instance. As
a result, the defender gets a maximum regret of 2.20.

5 ARROW Algorithm: Boundedly Rational Attacker

Algorithm 1 presents the outline of ARROW to solve the MMRb problem in Equation
9. Essentially, ARROW’s two novelties compared to previous work [17] — addressing
uncertainty in both players’ payoffs and a boundedly rational attacker — lead to two
new computational challenges: 1) uncertainty in defender payoffs makes the defender’s
expected utility at every target t non-convex in x and (Rd,Pd) (Equation 2); and 2)
the SUQR model is in the form of a logit function which is non-convex. These two
non-convex functions are combined when calculating the defender’s utility (Equation
7) — which is then used in computing MMRb (Equation 9), making it computationally
expensive. Overall, MMRb can be reformulated as minimizing the max regret r such
that r is no less than the behavioral regrets over all payoff instances within the intervals:

min
x∈X,r∈R

r (10)

s.t. r ≥ F(x′,Ra,Pa)− F(x,Ra,Pa),∀(Ra,Pa) ∈ I,x′ ∈ X

In (10), the set of (non-convex) constraints is infinite since X and I are continuous. One
practical approach to optimization with large constraint sets is constraint sampling [6],
coupled with constraint generation [2]. Following this approach, ARROW samples a
subset of constraints in Problem (10) and gradually expands this set by adding violated
constraints to the relaxed problem until convergence to the optimal MMRb solution.

Specifically, ARROW begins by sampling pairs (Ra,Pa) of the adversary payoffs
uniformly from I. The corresponding optimal strategies for the defender given these



9

payoff samples, denoted x′, are then computed using the PASAQ algorithm [28] to
obtain a finite set S of sampled constraints (Line 2). These sampled constraints are then
used to solve the corresponding relaxed MMRb program (line 4) using the R.ARROW
algorithm (described in Section 5.1) — we call this problem relaxed MMRb as it only
has samples of constraints in (10). We thus obtain the optimal solution (lb,x∗) which
provides a lower bound (lb) on the true MMRb. Then constraint generation is applied to
determine violated constraints (if any). This uses the M.ARROW algorithm (described
in Section 5.2) which computes MRb(x

∗, I) — the optimal regret of x∗ which is an
upper bound (ub) on the true MMRb. If ub > lb, the optimal solution of M.ARROW,
{x′,∗,Ra,∗,Pa,∗}, provides the maximally violated constraint (line 5), which is added to
S. Otherwise, x∗ is the minimax optimal strategy and lb=ub=MMRb(I).

5.1 R.ARROW: Compute Relaxed MMRb

The first step of ARROW is to solve the relaxed MMRb problem using R.ARROW.
This relaxed MMRb problem is non-convex. Thus, R.ARROW presents two key ideas
for efficiency: 1) binary search (which iteratively searches the defender’s utility space to
find the optimal solution) to remove the fractional terms (i.e., the attacking probabilities
in Equation 5) in relaxed MMRb; and 2) it then applies piecewise-linear approximation
to linearize the non-convex terms of the resulting decision problem at each binary search
step (as explained below). Overall, relaxed MMRb can be represented as follows:

min
x∈X,r∈R

r (11)

s.t. r ≥ F(x′,k,Ra,k,Pa,k)− F(x,Ra,k,Pa,k),∀k = 1 . . .K

where (x′,k,Ra,k,Pa,k) is the kth sample in S (i.e., the payoff sample set as described
in Algorithm 1) where k = 1 . . .K and K is the total number of samples in S. In
addition, r is the defender’s max regret for playing x against sample set S. Finally,
F(x′,k,Ra,k,Pa,k) is the defender’s optimal utility for every sample of attacker pay-
offs (Ra,k,Pa,k) where x′,k is the corresponding defender’s optimal strategy (which
can be obtained via PASAQ [28]). The term F(x,Ra,k,Pa,k), which is included in
relaxed MMRb’s constraints, is non-convex and fractional in x (Equation 7), making
(11) non-convex and fractional. We now detail the two key ideas of R.ARROW.
Binary search. In each binary search step, given a value of r, R.ARROW tries to solve
the decision problem (P1) that determines if there exists a defender strategy x such that
the defender’s regret for playing x against any payoff sample in S is no greater than r.

(P1) : ∃x s.t. r ≥ F(x′,k,Ra,k,Pa,k)− F(x,Ra,k,Pa,k),∀k = 1 . . .K?

We present the following Proposition 1 showing that (P1) can be converted into the non-
fractional optimization problem (P2) (as shown below) of which the optimal solution
is used to determine the feasibility of (P1):

(P2): min
x∈X,v∈R

v

s.t. v ≥
∑

t

[
F(x′,k,Ra,k,Pa,k)−r−Ud,k

t (x)
]
eÛ

a
t (x,R

a,k,Pa,k),∀k = 1 . . .K



10

where Ud,k
t (x) = −

[
xtP

a,k
t + (1− xt)Ra,kt

]
is the defender’s expected utility at tar-

get t given x and the kth payoff sample.

Proposition 1. Suppose that (v∗,x∗) is the optimal solution of (P2). If v∗ ≤ 0, then x∗

is a feasible solution of the decision problem (P1). Otherwise, (P1) is infeasible.

The proof of Proposition 1 is in Online Appendix B. Given that the decision problem
(P1) is now converted into the optimization problem (P2), as the next step, we attempt
to solve (P2) using piecewise linear approximation.
Piecewise linear approximation. Although (P2) is non-fractional, its constraints are
non-convex. We use a piecewise linear approximation for the RHS of the constraints in
(P2) which is in the form of

∑
t f

k
t (xt) where the term fkt (xt) is a non-convex func-

tion of xt (recall that xt is the defender’s coverage probability at target t). The feasi-
ble region of the defender’s coverage xt for all t, [0, 1], is then divided into M equal
segments

{[
0, 1

M

]
,
[

1
M , 2

M

]
, . . . ,

[
M−1
M , 1

]}
where M is given. The values of fkt (xt)

are then approximated by using the segments connecting pairs of consecutive points(
i−1
M , fkt

(
i−1
M

))
and

(
i
M , fkt

(
i
M

))
for i = 1 . . .M as follows:

fkt (xt)≈fkt (0)+
∑M

i=1
αkt,ixt,i (12)

where αkt,i is the slope of the ith segment which can be determined based on the two
extreme points of the segment. Also, xt,i refers to the portion of the defender’s coverage
at target t belonging to the ith segment, i.e., xt=

∑
i xt,i.

Example 2. When the number of segments M = 5, it means that we divide [0, 1] into 5
segments

{[
0, 15
]
,
[
1
5 ,

2
5

]
,
[
2
5 ,

3
5

]
,
[
3
5 ,

4
5

]
,
[
4
5 , 1
]}

. Suppose that the defender’s coverage
at target t is xt = 0.3, since 1

5 < xt <
2
5 , we obtain the portions of xt that belongs

to each segment is xt,1 = 1
5 , xt,2 = 0.1, and xt,3 = xt,4 = xt,5 = 0 respectively.

Then each non-linear term fkt (xt) is approximated as fkt (xt)≈fkt (0)+1
5α

k
t,1 +0.1αkt,2

where the slopes of the 1st and 2nd segments are αkt,1 = 5
[
fkt
(
1
5

)
− fkt (0)

]
and αkt,2 =

5
[
fkt
(
2
5

)
− fkt

(
1
5

)]
respectively.

By using the approximations of fkt (xt) for all k and t, we can reformulate (P2) as the
MILP (P2’) which can be solved by the solver CPLEX:

(P2’): min
xt,i,zt,i,v

v (13)

s.t. v ≥
∑

t
fkt (0) +

∑
t

∑
i
αkt,ixt,i,∀k = 1 . . .K (14)∑

t,i
xt,i ≤ R, 0 ≤ xt,i ≤

1

M
,∀t = 1 . . . T, i = 1 . . .M (15)

zt,i
1

M
≤ xt,i,∀t = 1 . . . T, i = 1 . . .M − 1 (16)

xt,i+1 ≤ zt,i,∀t = 1 . . . T, i = 1 . . .M − 1 (17)
zt,i ∈ {0, 1},∀t = 1 . . . T, i = 1 . . .M − 1 (18)

where zt,i is an auxiliary integer variable which ensures that the portions of xt satisfies
xt,i =

1
M if xt ≥ i

M (zt,i = 1) or xt,i+1 = 0 if xt < i
M (zt,i = 0) (constraints (15



11

– 18)). Constraints (14) are piecewise linear approximations of constraints in (P2). In
addition, constraint (15) guarantees that the resource allocation condition,

∑
t xt ≤ R,

holds true and the piecewise segments 0 ≤ xt,i ≤ 1
M .

Finally, we provide Theorem 1 showing that R.ARROW guarantees a solution bound
on computing relaxed MMRb. The proof of Theorem 1 is in the Online Appendix C.

Theorem 1. R.ARROW provides an O
(
ε+ 1

M

)
-optimal solution of relaxed MMRb

where ε is the tolerance of binary search and M is the number of piecewise segments.

5.2 M.ARROW: Compute MRb

Given the optimal solution x∗ returned by R.ARROW, the second step of ARROW is to
compute MRb of x∗ using M.ARROW (line 5 in Algorithm 1). The problem of com-
puting MRb can be represented as the following non-convex maximization problem:

max
x′∈X,(Ra,Pa)∈I

F(x′,Ra,Pa)− F(x∗,Ra,Pa) (19)

Overall, it is difficult to apply the same techniques used in R.ARROW for M.ARROW
since it is a subtraction of two non-convex fractional functions, F(x′,Ra,Pa) and
F(x∗,Ra,Pa). Therefore, we use local search with multiple starting points which al-
lows us to reach different local optima.

6 ARROW-Perfect Algorithm: Perfectly Rational Attacker

While ARROW incorporates an adversary behavioral model, it may not be applicable
for green security domains where there may be a further paucity of data in which not
only payoffs are uncertain but also parameters of the behavioral model are difficult
to learn accurately. Therefore, we introduce a novel MMR-based algorithm, ARROW-
Perfect, to handle uncertainty in both players’ payoffs assuming a perfectly rational
attacker. In general, ARROW-Perfect follows the same constraint sampling and con-
straint generation methodology as ARROW. Yet, by leveraging the property that the
attacker’s optimal response is a pure strategy (given a perfectly rational attacker) and
the game is zero-sum, we obtain the exact optimal solutions for computing both relaxed
MMR and max regret in polynomial time (while we cannot provide such guarantees for
a boundedly rational attacker). In this case, we call the new algorithms for computing
relaxed MMR and max regret: R.ARROW-Perfect and M.ARROW-Perfect respectively.

6.1 R.ARROW-Perfect: Compute Relaxed MMR

In zero-sum games, when the attacker is perfectly rational, the defender’s utility for
playing a strategy x w.r.t the payoff sample (Ra,k,Pa,k) is equal to F

(
x,Ra,k,Pa,k

)
=

−Ua
t

(
x,Ra,k,Pa,k

)
if the attacker attacks target t. Since the adversary is perfectly ra-

tional, therefore, F
(
x,Ra,k,Pa,k

)
= −maxtU

a
t

(
x,Ra,k,Pa,k

)
, we can reformulate

the relaxed MMR in (11) as the following linear minimization problem:

min
x∈X,r∈R

r (20)

s.t. r ≥ F
(
x′,k,Ra,k,Pa,k

)
+Ua

t

(
x,Ra,k,Pa,k

)
,∀k = 1 . . .K,∀t = 1 . . . T (21)



12

where F
(
x′,k,Ra,k,Pa,k

)
is the defender’s optimal utility against a perfectly rational

attacker w.r.t payoff sample
(
Ra,k,Pa,k

)
and x′,k is the corresponding optimal strat-

egy which is the Maximin solution. In addition, constraint (21) ensures that the regret
r ≥ F

(
x′,k,Ra,k,Pa,k

)
+maxtU

a
t

(
x,Ra,k,Pa,k

)
for all payoff samples. This linear

program can be solved exactly in polynomial time using any linear solver, e.g., CPLEX.

6.2 M.ARROW-Perfect: Compute Max Regret

Computing max regret (MR) in zero-sum games presents challenges that previous work
[17] can not handle since the defender’s payoffs are uncertain while [17] assumes these
payoff values are known. In this work, we propose a new exact algorithm, M.ARROW-
Perfect, to compute MR in polynomial time by exploiting insights of zero-sum games.

In zero-sum games with a perfectly rational adversary, Strong Stackelberg Equilib-
rium is equivalent to Maximin solution [30]. Thus, given the strategy x∗ returned by
relaxed MMR, max regret in (19) can be reformulated as follows:

max
x′∈X,(Ra,Pa)∈I,v

v − F(x∗,Ra,Pa) (22)

s.t. v ≤ − [x′tP
a
t + (1− x′t)Rat ] ,∀t (23)

where v is the Maximin/SSE utility for the defender against the attacker payoff (Ra,Pa).
Moreover, the defender’s utility for playing x∗ can be computed as F(x∗,Ra,Pa) =
−
[
x∗jP

a
j + (1− x∗j )Raj

]
if the adversary attacks target j. Thus, we divide the attacker

payoff space into T subspaces such that within the jth subspace, the adversary always
attacks target j against the defender strategy x∗, for all j = 1 . . . T . By solving these T
sub-max regret problems corresponding to this division, our final global optimal solu-
tion of max regret will be the maximum of all T sub-optimal solutions.

Next, we will explain how to solve these sub-max regret problems. Given the jth

attacker payoff sub-space, we obtain the jth sub-max regret problem as:

max
x′∈X,(Ra,Pa)∈I,v

v + (x∗jP
a
j + (1− x∗j )Raj ) (24)

s.t. v ≤ −[x′tP at + (1− x′t)Rat ],∀t (25)
x∗jP

a
j + (1− x∗j )Raj ≥ x∗tP at + (1− x∗t )Rat ,∀t (26)

where constraints (26) ensures that the adversary attacks target j against the defender
strategy x∗. Here, constraints (25) are non-convex for all targets. We provide the fol-
lowing proposition which allows us to linearize constraints (25) for all targets but j.

Proposition 2. Given target j, the lower bounds of the attacker’s payoffs at all targets
except j, {Ramin(t), P amin(t)}t 6=j , are optimal solutions of

{
Raj , P

a
j

}
t6=j for the jth

sub-max regret problem.

The proof of Proposition 2 is in Online Appendix D. Now, only constraint (25) w.r.t
target j remains non-convex for which we provide further steps to simplify it. Given the
defender strategy x′, we define the attack set as including all targets with the attacker’s
highest expected utility: Γ (x′) = {t : Ua

t (x
′,Ra,Pa) = maxt′ U

a
t′ (x

′,Ra,Pa)}.



13

We provide the following observations based on which we can determine the optimal
value of the attacker’s reward at target j, Raj , for the sub-max regret problem (24–26)
(according to the Proposition 3 below):

Observation 1 If x′ is the optimal solution of computing the jth sub-max regret in
(24–26), target j belongs to the attack set Γ (x′).

Since x′ is the Maximin or SSE solution w.r.t attacker payoffs (Ra,Pa), the corre-
sponding attack set Γ (x′) has the maximal size [11]. In other words, if a target t belongs
to the attack set of any defender strategy w.r.t (Ra,Pa), then t ∈ Γ (x′). In (24–26),
because target j belongs to the attack set Γ (x∗), we obtain j ∈ Γ (x′).

Observation 2 If x′ is the optimal solution of computing the jth sub-max regret in
(24–26), the defender’s coverage at target j: x′j ≥ x∗j .

Since j ∈ Γ (x′) according to Observation 1, the defender utility for playing x′ is equal
to v = −[x′jP aj + (1 − x′j)Raj ]. Furthermore, the max regret in (24) is always not less
than zero, meaning that v ≥ −

[
x∗jP

a
j + (1− x∗j )Raj

]
. Thus, we obtain x′j ≥ x∗j .

Proposition 3. Given target j, the upper bound of the attacker’s reward at j,Ramax(j),
is an optimal solution of the attacker reward Raj for the jth sub-max regret problem.

Proof. Suppose that Raj < Ramax(j) is optimal in (24–26) and x′ is the corresponding
defender optimal strategy, then v = −[x′jP aj +(1−x′j)Raj ] according to the Observation
1. We then replace Raj with Ramax(j) while other rewards/penalties and x′ remain the
same. Since Raj < Ramax(j), this new solution is also feasible for (24–26) and target j
still belongs to Γ (x′). Therefore, the corresponding utility of the defender for playing
x′ will be equal to −

[
x′jP

a
j + (1− x′j)Ramax(j)

]
. Since Raj < Ramax(j) and x′j ≥ x∗j

(Observation 2), the following inequality holds true:

−
[
x′jP

a
j + (1− x′j)Ramax(j)

]
+
[
(x∗jP

a
j + (1− x∗j )Ramax(j)

]
(27)

= −
[
x′jP

a
j +(1−x′j)Raj

]
+
[
(x∗jP

a
j +(1−x∗j )Raj

]
+
[
x′j−x∗j

] [
Ramax(j)−Raj

]
(28)

≥ −
[
x′jP

a
j +(1−x′j)Raj

]
+
[
(x∗jP

a
j +(1−x∗j )Raj

]
. (29)

This inequality indicates that the defender’s regret w.r.t Ramax(j) (the LHS of the in-
equality) is no less than w.r.t Raj (the RHS of the inequality). Therefore, Ramax(j) is an
optimal solution of the attacker’s reward at target j for (24–26). �

Based on the Proposition 2 & 3 and the Observation 1, the jth sub-max regret (24–26)
is simplified to the following optimization problem:

max
x′∈X,Pa

j ,v
v + (x∗jP

a
j + (1− x∗j )Ramax(j)) (30)

s.t. v = −
[
x′jP

a
j + (1− x′j)Ramax(j)

]
(31)

v ≤ − [x′tP
a
min(t) + (1− x′t)Ramin(t)] ,∀t 6= j (32)

P amax(j) ≥ P aj ≥ max

{
P amin(j),

C − (1− x∗j )Ramax(j)
x∗j

}
(33)



14

whereC = maxt 6=j x
∗
tP

a
min(t)+(1−x∗t )Ramin(t) is a constant. In addition, constraints

(31–32) refer to constraint (25) (where constraint (31) is a result of Observation 1) and
constraints (33) is equivalent to constraint (26). The only remaining non-convex term
is x′jP

a
j in constraint (31). We then alleviate the computational cost incurred based

on Theorem 2 which shows that if the attack set Γ (x′) is known beforehand, we can
convert (30–33) into a simple optimization problem which is straightforward to solve.

Theorem 2. Given the attack set Γ (x′), the jth sub-max regret problem (30–33) can
be represented as the following optimization problem on the variable v only:

max
v

v +
av + b

cv + d
(34)

s.t. v ∈ [lv, uv]. (35)

where v is the defender utility for playing x′ in (30–33).

The proof of Theorem 2 is in Online Appendix E. The constants (a, b, c, d, lv, uv) are
determined based on the attack set Γ (x′), the attacker’s payoffs {Ramin(t), P amin(t)}t6=j
and Ramax(j), and the number of the defender resources R. Here, the total number of
possible attack sets Γ (x′) is maximally T sets according to the property that Rat > Rat′
for all t ∈ Γ (x′) and t′ /∈ Γ (x′) [11]. Therefore, we can iterate over all these possible
attack sets and solve the corresponding optimization problems in (34–35). The optimal
solution of each sub-max regret problem (30–33) will be the maximum over optimal
solutions of (34–35). The final optimal solution of the max regret problem (22) will be
the maximum over optimal solutions of all these sub-max regret problems.

In summary, we provide the M.ARROW-Perfect algorithm to exactly compute max
regret of playing the strategy x∗ against a perfectly rational attacker in zero-sum games
by exploiting the insight of extreme points of the uncertainty intervals as well as at-
tack sets. Furthermore, we provide Theorem 3 (its proof is in the Online Appendix F)
showing that the computational complexity of solving max regret is polynomial.

Theorem 3. M.ARROW-Perfect provides an optimal solution for computing max regret
against a perfectly rational attacker in O(T 3) time.

7 UAV Planning for Payoff Elicitation (PE)

Our final contribution is to provide PE heuristics to select the best UAV path to re-
duce uncertainty in payoffs, given any adversary behavioral model. Despite the limited
availability of mobile sensors in conservation areas (many of them being in developing
countries), these UAVs may still be used to collect accurate imagery of these areas peri-
odically, e.g., every six months to reduce payoff uncertainty. Since the UAV availability
is limited, it is important to determine the best UAV paths such that reducing payoff
uncertainty at targets on these paths could help reducing the defender’s regret the most.
While a UAV visits multiple targets to collect data, planning an optimal path (which
considers all possible outcomes of reducing uncertainty) is computationally expensive.
Thus, we introduce the current solution-based algorithm which evaluates a UAV path
based solely on the MMRb solution given current intervals.10

10 A similar idea was introduced in [2] although in a very different domain without UAV paths.



15

Algorithm 2: Elicitation process
1 Input: budget: B, regret barrier: δ, uncertainty intervals: I;
2 Initialize regret r = +∞, cost c = 0 ;
3 while c < B and r > δ do
4 (r,x∗, (x′,∗,Ra,∗,Pa,∗)) = ARROW(I);
5 P = calculatePath(x∗, (x′,∗,Ra,∗,Pa,∗));
6 I = collectInformationUAV(P); c = updateCost(P);

7 return (r,x∗);

Fig. 2. Min Cost Network Flow

We first present a general elicitation process for UAV planning (Algorithm 2). The
input includes the defender’s initial budget B (e.g., limited time availability of UAVs),
the regret barrier δ which indicates how much regret (utility loss) the defender is willing
to sacrifice, and the uncertainty intervals I. The elicitation process consists of multiple
rounds of flying a UAV and stops when the UAV cost exceeds B or the defender’s
regret is less than δ. At each round, ARROW is applied to compute the optimal MMRb

solution given current I; ARROW then outputs the regret r, the optimal strategy x∗,
and the corresponding most unfavorable strategy and payoffs (x′,∗,Ra,∗,Pa,∗) which
provide the defender’s max regret (line 4). Then the best UAV path is selected based on
these outputs (line 5). Finally, the defender controls the UAV to collect data at targets
on that path to obtain new intervals and then updates the UAV flying cost (line 6).

The key aspects of Algorithm 2 are in lines 4 and 5 where the MMRb solution is
computed by ARROW and the current solution heuristic is used to determine the best
UAV path. In this heuristic, the preference value of a target t, denoted pr(t), is measured
as the distance in the defender utility between x∗ and the most unfavorable strategy x′,∗

against attacker payoffs (Ra,∗,Pa,∗) at that target, which can be computed as follows:
pr(t) = q̂t(x

∗,Ra,∗,Pa,∗)Ud
t (x
∗,Rd,Pd)− q̂t(x

′,∗,Ra,∗,Pa,∗)Ud
t (x
′,∗,Rd,Pd) where

Rd = −Pa,∗ and Pd = −Ra,∗. Intuitively, targets with higher preference values play
a more important role in reducing the defender’s regret. We use the sum of preference
values of targets to determine the best UAV path based on the two heuristics: Greedy
heuristic: The chosen path consists of targets which are iteratively selected with the
maximum pr value and then the best neighboring target.
MCNF heuristic: We represent this problem as a Min Cost Network Flow (MCNF)
where the cost of choosing a target t is −pr(t). For example, there is a grid of four



16

(a) ARROW regret (b) Influence of parameters

Fig. 3. Solution quality of ARROW

cells (t1, t2, t3, t4) (Figure 2(a)) where each cell is associated with its preference value,
namely (pr(1), pr(2), pr(3), pr(4)). Suppose that a UAV covers a path of two cells
every time it flies and its entry locations (where the UAV takes off or land) can be at any
cell. The MCNF for UAV planning is shown in Figure 2(b) which has two layers where
each cell ti has four copies (t1i, t

2
i, t

3
i, t

4
i ) with edge costs c(t1i, t

2
i ) = c(t3i , t

4
i ) =−pr(i).

The connectivity between these two layers corresponds to the grid connectivity. There
are Source and Sink nodes which determine the UAV entry locations. The edge costs
between the layers and between the Source or Sink to the layers are set to zero.

8 Experimental Results

We use CPLEX for our algorithms and Fmincon of MATLAB on a 2.3 GHz/4 GB
RAM machine. Key comparison results are statistically significant under bootstrap-t
(α = 0.05) [25]. More results are in the Online Appendix G.

8.1 Synthetic Data

We first conduct experiments using synthetic data to simulate a wildlife protection area.
The area is divided into a grid where each cell is a target, and we create different payoff
structures for these cells. Each data point in our results is averaged over 40 payoff struc-
tures randomly generated by GAMUT [19]. The attacker reward/defender penalty refers
to the animal density while the attacker penalty/defender reward refers to, for example,
the amount of snares that are confiscated by the defender [27]. Here, the defender’s
regret indicates the animal loss and thus can be used as a measure for the defender’s
patrolling effectiveness. Upper and lower bounds for payoff intervals are generated ran-
domly from [-14, -1] for penalties and [1, 14] for rewards with an interval size of 4.0.
Solution Quality of ARROW. The results are shown in Figure 3 where the x-axis
is the grid size (number of targets) and the y-axis is the defender’s max regret. First,
we demonstrate the importance of handling the attacker’s bounded rationality in AR-
ROW by comparing solution quality (in terms of the defender’s regret) of ARROW
with ARROW-Perfect and Maximin. Figure 3(a) shows that the defender’s regret sig-
nificantly increases when playing ARROW-Perfect and Maximin strategies compared
to playing ARROW strategies, which demonstrates the importance of behavioral MMR.



17

(a) Runtime vs #Targets (b) Runtime vs Regret

Fig. 4. Runtime performance of ARROW

Second, we examine how ARROW’s parameters influence the MMRb solution
quality; which we show later affects its runtime-solution quality tradeoff. We exam-
ine if the defender’s regret significantly increases if (i) the number of starting points
in M.ARROW decreases (i.e., ARROW with 20 (ARROW-20), 5 (ARROW-5) and
1 (ARROW-1) starting points for M.ARROW and 40 iterations to iteratively add 40
payoff samples into the set S), or (ii) when ARROW only uses R.ARROW (without
M.ARROW) to solve relaxed MMRb (i.e., R.ARROW with 50 (R.ARROW-50) and
100 (R.ARROW-100) uniformly random payoff samples). Figure 3(b) shows that the
number of starting points in M.ARROW does not have a significant impact on solu-
tion quality. In particular, ARROW-1’s solution quality is approximately the same as
ARROW-20 after 40 iterations. This result shows that the shortcoming of local search
in M.ARROW (where solution quality depends on the number of starting points) is
compensated by a sufficient number (e.g., 40) of iterations in ARROW. Furthermore, as
R.ARROW-50 and R.ARROW-100 only solve relaxed MMRb, they both lead to much
higher regret. Thus, it is important to include M.ARROW in ARROW.
Runtime Performance of ARROW. Figure 4(a) shows the runtime of ARROW with
different parameter settings. In all settings, ARROW’s runtime linearly increases in the
number of targets. Further, Figure 3(a) shows that ARROW-1 obtains approximately the
same solution quality as ARROW-20 while running significantly faster (Figure 4(a)).
This result shows that one starting point of M.ARROW might be adequate for solving
MMRb in considering the trade-off between runtime performance and solution quality.
Figure 4(b) plots the trade-off between runtime and the defender’s regret in 40 iterations
of ARROW-20 for 20-40 targets which shows a useful anytime profile.

Fig. 5. Runtime Performance of ARROW-Perfect

Runtime Performance of ARROW-
Perfect. Figure 5 shows the run-
time performance of ARROW-Perfect
compared to ARROW and a non-
linear solver (i.e., fmincon of Matlab)
to compute MMR of the perfectly ra-
tional attacker case. While the runtime
of both ARROW and non-linear solver
increase quickly w.r.t the number of
targets (e.g., it takes them approxi-
mately 20 minutes to solve a 200-



18

(a) Solution quality (b) Runtime performance

Fig. 6. UAV planning: uncertainty reduction over rounds

(a) Small interval (b) Larger interval

Fig. 7. Real world max regret comparison

target game on average), ARROW-
Perfect’s runtime slightly increases and reaches 53 seconds to solve a 800-target game
on average. This result shows that ARROW-Perfect is scalable for large security games.
Payoff Elicitation. We evaluate our PE strategies using synthetic data of 5 × 5-target
(target = 2× 2 km cell) games. The UAV path length is 3 cells and the budget for flying
a UAV is set to 5 rounds of flying. We assume the uncertainty interval is reduced by half
after each round. Our purpose is to examine how the defender’s regret is reduced over
different rounds. The empirical results are shown in Figure 6 where the x-axis is the
number of rounds and the y-axis is the regret obtained after each round (Figure 6(a)) or
the accumulative runtime of the elicitation process over rounds (Figure 6(b)). We com-
pare three heuristics: 1) randomly choosing a path (Random) 2) Greedy, and 3) MCNF.
Figure 6 shows that the defender’s regret is reduced significantly by using Greedy and
MCNF in comparison with Random. As mentioned, the difference are statistically sig-
nificant (α = 0.05). Also, both Greedy and MCNF run as quickly as Random.

8.2 Real-world Data

Lastly, we use our wildlife dataset from Uganda (Section 3) to analyze the effectiveness
of past patrols conducted by rangers (in the wildlife park) compared with the patrol
strategies generated by ARROW. We choose multiple subsets of 50 grid cells each, ran-
domly sampled from the 2423 grid cells for our analysis. Before these wildlife areas
were patrolled, there was uncertainty in the features values in those areas. We simulate



19

these conditions faced by real world patrollers by introducing uncertainty intervals in
the real-world payoffs. In our experiments, we impose uncertainty intervals on the ani-
mal density for each target, though two cases: a small and a large interval of sizes 5 and
10 respectively. Figures 7(a) and 7(b) show the comparison of the max regret achieved
by ARROW and real world patrols for 10 such subsets, under the above mentioned
cases of payoff uncertainty intervals. The x-axis refers to 10 different random subsets
and the y-axis is the corresponding max regret. These figures clearly show that ARROW
generates patrols with significantly less regret as compared to real-world patrols.

9 Summary

Whereas previous work in GSGs had assumed that there was an abundance of data in
these domains, such data is not always available. To address such situations, we pro-
vide four main contributions: 1) for the first time, we compare key behavioral models,
e.g., SUQR/QR on real-world data and show SUQR’s usefulness in predicting adver-
sary decisions; 2) we propose a novel algorithm, ARROW, to solve the MMRb prob-
lem addressing both the attacker’s bounded rationality and payoff uncertainty (when
there is sufficient data to learn adversary behavioral models); 3) we present a new scal-
able MMR-based algorithm, ARROW-Perfect, to address payoff uncertainty against a
perfectly rational attacker (when learning behavioral models is infeasible), and 4) we
introduce new PE strategies for mobile sensors, e.g., UAV to reduce payoff uncertainty.

Acknowledgements: This research was supported by MURI Grant W911NF-11-1-0332 and by
CREATE under grant number 2010-ST-061-RE0001. We wish to acknowledge the contribution of
all the rangers and wardens in Queen Elizabeth National Park to the collection of law enforcement
monitoring data in MIST and the support of Uganda Wildlife Authority, Wildlife Conservation
Society and MacArthur Foundation, US State Department and USAID in supporting these data
collection financially.

References

1. Basilico, N., Gatti, N., Amigoni, F.: Leader-follower strategies for robotic patrolling in envi-
ronments with arbitrary topologies. In: AAMAS (2009)

2. Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Constraint-based optimization and
utility elicitation using the minimax decision criterion. Artificial Intelligence (2006)

3. Braziunas, D., Boutilier, C.: Assessing regret-based preference elicitation with the utpref
recommendation system. In: EC (2010)

4. Brown, M., Haskell, W.B., Tambe, M.: Addressing scalability and robustness in security
games with multiple boundedly rational adversaries. In: GameSec (2014)

5. Brunswik, E.: The conceptual framework of psychology, vol. 1. Univ of Chicago Pr (1952)
6. De Farias, D.P., Van Roy, B.: On constraint sampling in the linear programming approach to

approximate dynamic programming. Mathematics of operations research (2004)
7. Fang, F., Stone, P., Tambe, M.: When security games go green: Designing defender strategies

to prevent poaching and illegal fishing. In: IJCAI (2015)
8. French, S.: Decision theory: an introduction to the mathematics of rationality. Halsted Press

(1986)



20

9. Haskell, W.B., Kar, D., Fang, F., Tambe, M., Cheung, S., Denicola, L.E.: Robust protection
of fisheries with compass. In: IAAI (2014)

10. Kiekintveld, C., Islam, T., Kreinovich, V.: Security games with interval uncertainty. In: AA-
MAS (2013)

11. Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordez, F., Tambe, M.: Computing optimal ran-
domized resource allocations for massive security games. In: AAMAS (2009)

12. Korzhyk, D., Conitzer, V., Parr, R.: Complexity of computing optimal stackelberg strategies
in security resource allocation games. In: AAAI (2010)

13. Letchford, J., Vorobeychik, Y.: Computing randomized security strategies in networked do-
mains. In: AARM (2011)

14. McFadden, D.: Conditional logit analysis of qualitative choice behavior. Tech. rep. (1972)
15. McKelvey, R., Palfrey, T.: Quantal response equilibria for normal form games. Games and

economic behavior 10(1), 6–38 (1995)
16. Montesh, M.: Rhino poaching: A new form of organised crime1. Tech. rep., University of

South Africa (2013)
17. Nguyen, T.H., Yadav, A., An, B., Tambe, M., Boutilier, C.: Regret-based optimization and

preference elicitation for stackelberg security games with uncertainty. In: AAAI (2014)
18. Nguyen, T.H., Yang, R., Azaria, A., Kraus, S., Tambe, M.: Analyzing the effectiveness of

adversary modeling in security games. In: AAAI (2013)
19. Nudelman, E., Wortman, J., Shoham, Y., Leyton-Brown, K.: Run the gamut: A comprehen-

sive approach to evaluating game-theoretic algorithms. In: AAMAS (2004)
20. Pita, J., Jain, M., Tambe, O.M., Kraus, S., Magori-cohen, R.: Effective solutions for real-

world stackelberg games: When agents must deal with human uncertainties. In: AAMAS
(2009)

21. Qian, Y., Haskell, W.B., Jiang, A.X., Tambe, M.: Online planning for optimal protector
strategies in resource conservation games. In: AAMAS (2014)

22. Secretariat, G.: Global tiger recovery program implementation plan: 2013-14. Report, The
World Bank, Washington, DC (2013)

23. Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B., Meyer, G.: Pro-
tect: A deployed game theoretic system to protect the ports of the united states. In: AAMAS
(2012)

24. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned.
Cambridge University Press (2011)

25. Wilcox, R.: Applying contemporary statistical techniques. Academic Press (2002)
26. Wright, J.R., Leyton-Brown, K.: Level-0 meta-models for predicting human behavior in

games. In: ACM-EC. pp. 857–874 (2014)
27. Yang, R., Ford, B., Tambe, M., Lemieux, A.: Adaptive resource allocation for wildlife pro-

tection against illegal poachers. In: AAMAS (2014)
28. Yang, R., Ordonez, F., Tambe, M.: Computing optimal strategy against quantal response in

security games. AAMAS (2012)
29. Yin, Z., Jiang, A.X., Tambe, M., Kiekintveld, C., Leyton-Brown, K., Sandholm, T., Sullivan,

J.P.: Trusts: Scheduling randomized patrols for fare inspection in transit systems using game
theory. AI Magazine (2012)

30. Yin, Z., Korzhyk, D., Kiekintveld, C., Conitzer, V., Tambe, M.: Stackelberg vs. nash in secu-
rity games: Interchangeability, equivalence, and uniqueness. AAMAS (2010)


