AI for Social Good: Decision aids for Countering Terrorism, Extinction, Homelessness

MILIND TAMBE

Founding Co-director, Center for Artificial Intelligence in Society (CAIS)
University of Southern California
tambe@usc.edu

Co-Founder, Avata Intelligence
AI and Multiagent Systems Research for Social Good

Public Safety and Security

Conservation

Public Health

Date: 12/3/18
Viewing Social Problems as Multiagent Systems

Key research challenge across problem areas:

Optimize Our Limited Intervention Resources when Interacting with Other Agents
Multiagent Systems
Optimizing Limited Intervention (Security) Resources

Public Safety and Security
Stackelberg Security Games

- Game Theory for security resource optimization
- Real-world: US Coast Guard, US Federal Air Marshals Service…
Multiagent Systems
Optimizing Limited Intervention (Ranger) Resources

Conservation/Wildlife Protection: Green Security Games

- Security games and adversary (poacher) behavior prediction
- Real-world: National parks in Uganda, Malaysia…
Multiagent Systems
Optimizing Limited Intervention (Messaging) Resources

Public Health Awareness:
Influence Maximization as a Game against Nature

- Social networks to enhance intervention, e.g., HIV information
- **Real-world pilot tests: Homeless youth shelters in Los Angeles**
Overall Research Framework, Partnerships and Publications

Date: 12/3/18
Outline

Public Safety and Security
Stackelberg Security Games

Conservation/Wildlife Protection
Green Security Games

Public Health
Influence maximization/Game against nature

- AAMAS, AAAI, IJCAI evaluation + Real world evaluation
- PhD students and postdocs
11 July 2006: Mumbai

TRAIN OF TERROR
Mumbai continues to be the prime target for terrorist groups. It has borne the brunt of seven attacks in the past 13 years.

Explosive used
High-quality explosives. Most likely RDX. (Oxidised nitrocellulose)

Quantity of explosive
At least 5 kg per blast, possibly packed into bags or tiffin boxes

Where were bombs placed?
In the baggage racks where commuters keep their bags and tiffin boxes

How many bombers were there?
At least 20; 2 for each train and a logistic team of 8 people

Why attack the first class compartments?
It is easier to enter at first-class compartments at peak hour than a second-class with a bag filled with up to 5 kg of explosives

WARNING

JAN 4, 2003
12 bomb blasts in trains near Thane, three youths from Palghar arrested.

JAN 30, 2006
Four bomb blasts in trains near Thane, 12 arrests.

FEB 5, 2006
Two bomb blasts in trains near Thane, 35 arrests.

MAY 12, 2006
Three NSG commandos killed in a grenade attack on an RPF vehicle near Andheri, Thane.

Date: 12/3/18
ARMOR Airport Security: LAX(2007) Game Theory direct use for security resource optimization?

Erroll Southers

LAX Airport, Los Angeles

Glasgow: June 30, 2007

Date: 12/3/18
Game Theory for Security Resource Optimization

New Model: Stackelberg Security Games, key aspects for tractability

Set of targets, payoffs based on targets covered or not
Stackelberg Leader-Follower formulation

<table>
<thead>
<tr>
<th></th>
<th>Terminal #1</th>
<th>Terminal #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal #1</td>
<td>4, -3</td>
<td>-1, 1</td>
</tr>
<tr>
<td>Terminal #2</td>
<td>-5, 5</td>
<td>2, -1</td>
</tr>
</tbody>
</table>
Model: Stackelberg Security Games

Stackelberg: Defender commits to randomized strategy, adversary responds

Security optimization: Not 100% security; increase cost/uncertainty to attackers

Challenges faced: Massive scale games

<table>
<thead>
<tr>
<th></th>
<th>Terminal #1</th>
<th>Terminal #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal #1</td>
<td>4, -3</td>
<td>-1, 1</td>
</tr>
<tr>
<td>Terminal #2</td>
<td>-5, 5</td>
<td>2, -1</td>
</tr>
</tbody>
</table>
ARMOR at LAX
Basic Security Game Operation [2007]

<table>
<thead>
<tr>
<th>Target #1</th>
<th>Target #2</th>
<th>Target #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defender #1</td>
<td>2, -1</td>
<td>-3, 4</td>
</tr>
<tr>
<td>Defender #2</td>
<td>-3, 3</td>
<td>3, -2</td>
</tr>
<tr>
<td>Defender #3</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>

Mixed Integer Program

Pr (Canine patrol, 8 AM @Terminals 2,5,6) = 0.17

Canine Team Schedule, July 28

<table>
<thead>
<tr>
<th>Term 1</th>
<th>Term 2</th>
<th>Term 3</th>
<th>Term 4</th>
<th>Term 5</th>
<th>Term 6</th>
<th>Term 7</th>
<th>Term 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 AM</td>
<td>Team1</td>
<td></td>
<td></td>
<td>Team3</td>
<td>Team5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 AM</td>
<td></td>
<td>Team1</td>
<td>Team2</td>
<td></td>
<td></td>
<td>Team4</td>
<td></td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
<td>....</td>
<td>....</td>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>
Security Game MIP [2007]

\[
\text{max } \sum_{i \in X} \sum_{j \in Q} R_{ij} \times x_i \times q_j
\]

\[
s.t. \quad \sum_{i} x_i = 1
\]

\[
\sum_{j \in Q} q_j = 1
\]

\[
0 \leq (a - \sum_{i \in X} C_{ij} x_i) \leq (1 - q_j) M
\]

Target #1	Target #2	Target #3
Defender #1 | 2, -1 | -3, 4 | -3, 4
Defender #2 | -3, 3 | 3, -2 |
Defender #3 | | |

Maximize defender expected utility
Defender mixed strategy
Adversary response
Adversary best response

Date: 12/3/18
SECURITY GAME PAYOFFS [2007]
Previous Research Provides Payoffs in Security Games

<table>
<thead>
<tr>
<th>Defenders</th>
<th>Target #1</th>
<th>Target #2</th>
<th>Target #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defender #1</td>
<td>2, -1</td>
<td>-3, 4</td>
<td>-3, 4</td>
</tr>
<tr>
<td>Defender #2</td>
<td>-3, 3</td>
<td>3, -2</td>
<td>....</td>
</tr>
<tr>
<td>Defender #3</td>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>

\[\max \sum_{i \in X} \sum_{j \in Q} R_{ij} \times x_i \times q_j \]

Maximize defender expected utility

+ Handling Uncertainty
ARMOR:
Optimizing Security Resource Allocation [2007]

First application: Computational game theory for operational security

Date: 12/3/18

January 2009

• January 3rd
• January 9th
• January 10th
• January 12th
• January 17th
• January 22nd

16-Handguns, 1000 rounds of ammo
Two unloaded shotguns
Loaded 22/cal rifle
Loaded 9/mm pistol
Unloaded 9/mm pistol

Date: 12/3/18
ARMOR AIRPORT SECURITY: LAX [2008]
Congressional Subcommittee Hearings

Commendations
City of Los Angeles

Erroll Southers testimony
Congressional subcommittee

ARMOR…throws a digital cloak of invisibility….
Federal Air Marshals Service [2009]

Visiting Freedom Center: Home of Federal Air Marshals Service

Date: 12/3/18

IRIS 1000 flights/day
Actions: $\sim 10^{41}$
Scale Up Difficulty [2009]

\(x_i \) Defender mixed strategy

\[
\max_{x,q} \sum_{i \in X} \sum_{j \in Q} R_{ij} x_i q_j
\]

s.t. \(\sum_i x_i = 1, \sum_j q_j = 1 \)

\[
0 \leq (a - \sum_{i \in X} C_{ij} x_i) \leq (1 - q_j)M
\]

1000 flights, 20 air marshals:

\(10^{41} \) combinations

<table>
<thead>
<tr>
<th>Attack 1</th>
<th>Attack 2</th>
<th>Attack ...</th>
<th>Attack 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3 ..</td>
<td>5, -10</td>
<td>4, -8</td>
<td>...</td>
</tr>
<tr>
<td>1, 2, 4 ..</td>
<td>5, -10</td>
<td>4, -8</td>
<td>...</td>
</tr>
<tr>
<td>1, 3, 5 ..</td>
<td>5, -10</td>
<td>-9, 5</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>10^{41} rows</td>
<td>...</td>
</tr>
</tbody>
</table>
Scale Up [2009]
Exploiting Small Support Size

Theorem: For T targets, solutions exist where support set size is $T+1$

Small support set size: Most x_i variables zero

1000 flights, 20 air marshals:
10^{41} combinations

<table>
<thead>
<tr>
<th>Attack 1</th>
<th>Attack 2</th>
<th>Attack \ldots</th>
<th>Attack 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3 ..</td>
<td>5, 10</td>
<td>4, 9</td>
<td>...</td>
</tr>
<tr>
<td>1, 2, 4 ..</td>
<td>5, -10</td>
<td>4, -8</td>
<td>...</td>
</tr>
<tr>
<td>1, 3, 5 ..</td>
<td>5, 10</td>
<td>9, 5</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>10^{41} rows</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New Exact Algorithm for Scale up

Incremental strategy generation: First for Stackelberg Security Games

Master

<table>
<thead>
<tr>
<th></th>
<th>Attack 1</th>
<th>Attack 2</th>
<th>...</th>
<th>Attack 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,4</td>
<td>5,-10</td>
<td>4,-8</td>
<td>...</td>
<td>-20,9</td>
</tr>
<tr>
<td>1,2,4</td>
<td>5,-10</td>
<td>4,-8</td>
<td>...</td>
<td>-20,9</td>
</tr>
<tr>
<td>3,7,8</td>
<td>-8,10</td>
<td>-8,10</td>
<td>...</td>
<td>-8,10</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Slave (LP Duality Theory)

- **Best new pure strategy**
- **Global optimal**

1000 defender strategies

NOT 10^{41}
IRIS: Deployed FAMS [2009-]

Significant change in FAMS operations

September 2011: Certificate of Appreciation (Federal Air Marshals)
Road networks:
20,000 roads, 15 checkpoints

150 edges
2 Checkpoints
150-choose-2 strategies
Double oracle: New exact optimal algorithm for scale-up

Zero-Sum Network Security Game [2013]

Defender oracle

<table>
<thead>
<tr>
<th></th>
<th>Path #1</th>
<th>Path #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkpoint strategy #1</td>
<td>5, -5</td>
<td>-1, 1</td>
</tr>
<tr>
<td>Checkpoint strategy #2</td>
<td>-5, 5</td>
<td>1, -1</td>
</tr>
</tbody>
</table>

Attacker oracle

<table>
<thead>
<tr>
<th></th>
<th>Path #1</th>
<th>Path #2</th>
<th>Path #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkpoint strategy #1</td>
<td>5, -5</td>
<td>-1, 1</td>
<td>-2, 2</td>
</tr>
<tr>
<td>Checkpoint strategy #2</td>
<td>-5, 5</td>
<td>1, -1</td>
<td>-2, 2</td>
</tr>
</tbody>
</table>
Presentation at the Indian National Police Academy: Network Security Game [2016]

Road networks:
20,000 roads, 15 checkpoint: *Solved under 20 min*
PROTECT: Port and Ferry Protection Patrols [2011] Using Marginals for Scale up

Boston

Los Angeles

New York

Date: 12/3/18
Marginal strategy: New scale-up approach for Stackelberg Security Games
Date: 12/3/18

FERRIES: Mobile Resources & Moving Targets
Transition Graph Representation

<table>
<thead>
<tr>
<th></th>
<th>5 min</th>
<th>10 min</th>
<th>15 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A, 5 min</td>
<td>A, 10 min</td>
<td>A, 15 min</td>
</tr>
<tr>
<td>B</td>
<td>B, 5 min</td>
<td>B, 10 min</td>
<td>B, 15 min</td>
</tr>
<tr>
<td>C</td>
<td>C, 5 min</td>
<td>C, 10 min</td>
<td>C, 15 min</td>
</tr>
</tbody>
</table>

Ferry
FERRIES: Mobile Resources & Moving Targets
Transition Graph Representation

Patrol protects nearby ferry locations

<table>
<thead>
<tr>
<th></th>
<th>5 min</th>
<th>10 min</th>
<th>15 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A, 5 min</td>
<td>A, 10 min</td>
<td>A, 15 min</td>
</tr>
<tr>
<td>B</td>
<td>B, 5 min</td>
<td>B, 10 min</td>
<td>B, 15 min</td>
</tr>
<tr>
<td>C</td>
<td>C, 5 min</td>
<td>C, 10 min</td>
<td>C, 15 min</td>
</tr>
</tbody>
</table>

Ferry
Patrol

Date: 12/3/18
FERRIES: Mobile Resources & Moving Targets
Transition Graph Representation

Date: 12/3/18
FERRIES: Mobile Resources & Moving Targets Transition Graph Representation

ARMOR style LP: Determine probability for each route

<table>
<thead>
<tr>
<th></th>
<th>5 min</th>
<th>10 min</th>
<th>15 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A, 5 min</td>
<td>A, 10 min</td>
<td>A, 15 min</td>
</tr>
<tr>
<td>B</td>
<td>B, 5 min</td>
<td>B, 10 min</td>
<td>B, 15 min</td>
</tr>
<tr>
<td>C</td>
<td>C, 5 min</td>
<td>C, 10 min</td>
<td>C, 15 min</td>
</tr>
</tbody>
</table>

Date: 12/3/18
Variables: NOT routes, but marginal probability over each segment
Theorem: Marginal representation does not lose any solution quality

Extract: $\Pr((B,5), (C,10), (C,15)) = 0.47$
\[\Pr((B,5), (C,10), (B,15)) = 0.23\]
PROTECT: Port Protection Patrols [2013]
Congressional Subcommittee Hearing

June 2013: Meritorious Team Commendation from Commandant (US Coast Guard)

July 2011: Operational Excellence Award (US Coast Guard, Boston)
Train Patrols

Execution Uncertainty: MDPs

<table>
<thead>
<tr>
<th></th>
<th>5 min</th>
<th>10 min</th>
<th>15 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A, 5 min</td>
<td>A, 10 min</td>
<td>A, 15 min</td>
</tr>
<tr>
<td>B</td>
<td>B, 5 min</td>
<td>B, 10 min</td>
<td>B, 15 min</td>
</tr>
<tr>
<td>C</td>
<td>C, 5 min</td>
<td>C, 10 min</td>
<td>C, 15 min</td>
</tr>
</tbody>
</table>

Date: 12/3/18
Handling Payoff Uncertainty: Optimal Defender Strategy Minimizing Max Regret

- **Payoff uncertainty**

- **DefenderUtility(c):** -2.3
- **Optimal utility:** 0.4
- **Regret (c, payoff):** 2.7

<table>
<thead>
<tr>
<th>Adversary</th>
<th>Target #1</th>
<th>Target #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target #1</td>
<td>4, [-4,-2]</td>
<td>-1, [0,2]</td>
</tr>
<tr>
<td>Target #2</td>
<td>-5, [4,6]</td>
<td>2, [-2,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defender</th>
<th>Target #1</th>
<th>Target #2</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target #1</td>
<td>4, -3</td>
<td>-1, 1</td>
<td>0.3</td>
</tr>
<tr>
<td>Target #2</td>
<td>-5, 5</td>
<td>2, -2</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Minimizing Maximum Regret: New Iterative Constraint Generation Algorithm

\[
\min_{c, r} r \quad \text{where } r \geq \text{regret}(c, \text{payoff}), \forall \text{payoff} \in \text{Interval}
\]

Master: Compute Lower Bound

Minimax Regret with sample set of attacker payoffs

Slave: Compute Upper Bound

New attacker payoff causing max regret

Date: 12/3/18
Evaluating Deployed Security Systems Not Easy

How Well Optimized Use of Limited Security Resources?

Security Games superior
vs
Human Schedulers/”simple random”

- Lab evaluation
- *Scheduling competitions: Patrol quality unpredictability? Coverage?*
- Field evaluation: Tests against real adversaries
- *Economic cost-benefit analysis*
- …
Field Evaluation of Schedule Quality

Improved Patrol Unpredictability & Coverage for Less Effort

Patrols Before PROTECT: Boston

Patrols After PROTECT: Boston

350% increase in defender expected utility

Date: 12/3/18
Field Evaluation of Schedule Quality

Improved Patrol Unpredictability & Coverage for Less Effort

FAMS: IRIS Outperformed expert human over six months

Report: GAO-09-903T

Trains: TRUSTS outperformed expert humans schedule 90 officers on LA trains

Date: 12/3/18
Field Tests Against Adversaries

Computational Game Theory in the Field

Controlled

- 21 days of patrol, identical conditions
- Game theory vs Baseline+Expert

Not Controlled

Date: 12/3/18
New Directions in Stackelberg Security Games

- Threat Screening Games (AAAI16, IJCAI17, IJCAI18…)

- Cyber Security Games (IJCAI17, AAMAS18, CogSci18…)
Outline

Public Safety and Security
Stackelberg Security Games

Conservation/Wildlife Protection:
Green Security Games

Public Health/Social Work:
Influence maximization/Game against nature
Poaching of Wildlife in Uganda
Limited Intervention (Ranger) Resources to Protect Forests

Snare or Trap

Wire snares

Date: 12/3/18
Adversary not fully strategic; multiple “bounded rational” poachers

\[
\begin{align*}
\text{Max defender utility} & \quad \max_{x,q} \sum_{i \in X} \sum_{j \in Q} R_{ij} x_i q_j \\
\text{Defender mixed strategy} & \quad \text{s.t. } \sum_{i} x_i = 1 \\
& \quad 0 \leq (a - \sum_{i \in X} x_i) \leq (1 - q_j) M
\end{align*}
\]
Learn adversary bounded rational response: At each grid location i,

- **Ranger patrols:** $X(i)$
- **Features:** $F(i)$
- **Probability of finding snare in cell i:** g_i

Max defender utility

Max $x \sum_{i \in X} g_i(x_i)$

s.t. $\sum_i x_i = 1$

Defender mixed strategy
Learning Adversary Model
12 Years of Past Poaching Data

\[g_j \]

- Probability of snare Per 1 KM Grid Square

Factors:
- Ranger patrol
- Animal density
- Distance to rivers / roads / villages
- Area habitat
- Area slope
- ...
Learning Adversary Model
Uncertainty in Observations

$$g_j$$

- Ranger patrol
- Animal density
- Distance to rivers / roads / villages
- Probability of snare Per 1 KM Grid Square
- Area habitat
- Area slope
- ...

Record: No Attack (NEG)

Record: Attack (POS)

Walk more!
Adversary Modeling
Imperfect Crime Observation-aware Ensemble Model

Training: Filtered Datasets

<table>
<thead>
<tr>
<th>Patrol Effort</th>
<th>Train Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Predict: Ensemble of Classifiers

- **Patrol Effort**
 - 0
 - 1
 - 2

- **Ensemble of Classifiers**
 - C_0
 - C_1
 - C_2
Poacher Attack Prediction in the Lab

Poacher Behavior Prediction

Results from 2016

- Train Labels
- SVM
- Bagging Ensemble
- Our Best Model

Date: 12/3/18
Real-world Deployment 2016: First Trial

- Two 9-sq. km patrol areas
 - Where there were infrequent patrols
 - Where no previous hot spots
Real-world Deployment
Two Hot Spots Predicted

- Poached Animals: Poached elephant
- Snaring: 1 elephant snare roll
- Snaring: 10 Antelope snares

<table>
<thead>
<tr>
<th>Historical Base Hit Rate</th>
<th>Our Hit Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average: 0.73</td>
<td>3</td>
</tr>
</tbody>
</table>

Date: 12/3/18
Model Predicted High Risk vs Low Risk Areas: 2 National Parks, 24 areas each, 6 months

Date: 12/3/18
Green Security Games: Incorporating Real Time Information

- Drones in Green Security Games (AAAI18, IAAI18, GameSec17…)

\[\max_x \sum_{i \in X} g_i(x_i) \]
\[s.t. \sum_i x_i = 1 \]
Green Security Games: Around the Globe with SMART partnership

600 National Parks Around the Globe

Wildlife, Forests, Fisheries…
Outline

Public Safety and Security
Stackelberg Security Games

Conservation/Wildlife Protection:
Green Security Games

Public Health:
Influence maximization/Game against nature

Date: 12/3/18

Prof Eric Rice
Social Work
Preventing HIV in homeless youth: Rates of HIV 10 times housed population

- **Shelters**: Limited number of peer leaders to spread HIV information in social networks
Influence Maximization Background

- **Given:**
 - Social network Graph G
 - Choose K “peer leader” nodes

- **Objective:**
 - Maximize expected number of influenced nodes

- **Assumption:** Independent cascade model of information spread
Independent Cascade Model and Real-world Physical Social Networks

\[P(A, B) = 0.4 \]

\[\mu = 0.5 \]

\[\mu \in [0.3, 0.7] \]
Robust, Dynamic Influence Maximization

- Worst case parameters: a zero-sum game against nature

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>vs</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chooses policy, i.e., Chooses Peer leaders</td>
<td></td>
<td>Chooses parameters μ, σ</td>
</tr>
</tbody>
</table>

- Payoffs: (performance of algorithm)/OPT
HEALER Algorithm [2017]
Robust, Dynamic Influence Maximization

Theorem: Converge with approximation guarantees

- Equilibrium strategy despite exponential strategy spaces: Double oracle

<table>
<thead>
<tr>
<th></th>
<th>Nature</th>
<th>Nature’s oracle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Params #1</td>
<td>Params #2</td>
</tr>
<tr>
<td>Policy #1</td>
<td>0.8, -0.8</td>
<td>0.3, -0.3</td>
</tr>
<tr>
<td>Policy #2</td>
<td>0.7, -0.7</td>
<td>0.5, -0.5</td>
</tr>
<tr>
<td>Policy #3</td>
<td>0.6, -0.6</td>
<td>0.4, -0.4</td>
</tr>
</tbody>
</table>

Wilder

Theorem: Converge with approximation guarantees
Challenge: Multi-step Policy

<table>
<thead>
<tr>
<th></th>
<th>Params #1</th>
<th>Params #2</th>
<th>Params #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy #1</td>
<td>0.8, -0.8</td>
<td>0.3, -0.3</td>
<td>0.4, -0.4</td>
</tr>
<tr>
<td>Policy #2</td>
<td>0.7, -0.7</td>
<td>0.5, -0.5</td>
<td>0.6, -0.6</td>
</tr>
<tr>
<td>Policy #3</td>
<td>0.6, -0.6</td>
<td>0.4, -0.4</td>
<td>0.7, -0.7</td>
</tr>
</tbody>
</table>

K = 4
1\text{st} time step

K = 4
2\text{nd} time step

Date: 12/3/18
HEALER: POMDP Model for Multi-Step Policy [2015]
Robust, Dynamic Influence Maximization

<table>
<thead>
<tr>
<th>Params #1</th>
<th>Params #2</th>
<th>Params #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy #1</td>
<td>0.8, -0.8</td>
<td>0.3, -0.3</td>
</tr>
<tr>
<td>Policy #2</td>
<td>0.7, -0.7</td>
<td>0.5, -0.5</td>
</tr>
<tr>
<td>Policy #3</td>
<td>0.6, -0.6</td>
<td>0.4, -0.4</td>
</tr>
</tbody>
</table>

Choose nodes

Observation: Update propagation probability

POMDP partitions
Pilot Tests with HEALER with 170 Homeless Youth [2017]

Recruited youths:

<table>
<thead>
<tr>
<th>HEALER</th>
<th>HEALER++</th>
<th>DEGREE CENTRALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>56</td>
<td>55</td>
</tr>
</tbody>
</table>

12 peer leaders
Results: Pilot Studies

Percent of non-Peer Leaders

- **HEALER**
 - Informed: 70%
 - Not Informed: 30%

- **HEALER++**
 - Informed: 65%
 - Not Informed: 35%

- **Degree**
 - Informed: 60%
 - Not Informed: 40%

Informed Non-Peer Leaders Who Started Testing for HIV

- **HEALER**
 - Testing: 30%
 - Non-Testing: 70%

- **HEALER++**
 - Testing: 25%
 - Non-Testing: 75%

- **Degree**
 - Testing: 20%
 - Non-Testing: 80%

Date: 12/3/18
New Directions: Los Angeles
From an Angeleno

900 youth study

(AAAI18, AAMAS18)

Mayor Garcetti @ USC

HELP
New Directions: Mumbai
From a Mumbaikar

Prime Minister Modi @ Mumbai
AI for Social Good

Date: 12/3/18
Key Lessons: Directing Multiagent Systems Research towards Social Good

Multiagent systems research helps address complex social problems:
- Public safety & security, conservation, public health

Shared multiagent research challenges, solutions across problem areas:
- **Challenge**: Optimize limited intervention resources in interacting with others
- **Solution**: Computational game theory models/algorithms
- **New models**: Stackelberg security games, green security games...
- **Key algorithms**: Incremental strategy generation, marginals, double oracle...

Immersion/Deployment helps identify crucial research challenges
Future: Multiagent Systems and AI Research for Social Good

Tremendous potential: Improving society & fighting social injustice

Vital to bring AI to those not benefiting from AI, e.g., global south

Embrace interdisciplinary research -- social work, conservation
When working on AI for Societal Benefits:

- **Important step out of lab & into the field**
- **Societal impact**
- **Actual problem for societal benefit?**
- **Model deficiencies for new research directions?**