Adopt Algorithm for Distributed Constraint Optimization

Pragnesh Jay Modi

Information Sciences Institute & Department of Computer Science
University of Southern California
http://www.isi.edu/~modi
Distributed Optimization Problem

“How do a set of agents optimize over a set of alternatives that have varying degrees of global quality?”

Examples
- allocating resources
- constructing schedules
- planning activities

Difficulties
- No global control/knowledge
- Localized communication
- Quality guarantees required
- Limited time
Approach

- Constraint Based Reasoning
 - Distributed Constraint Optimization Problem (DCOP)
- Adopt algorithm
 - First-ever distributed, asynchronous, optimal algorithm for DCOP
 - Efficient, polynomial-space
- Bounded error approximation
 - Principled solution-quality/time-to-solution tradeoffs
Constraint Representation

Why constraints for multiagent systems?

- Constraints are natural, general, simple
 - Many successful applications
- Leverage existing work in AI
 - Constraints Journal, Conferences
- Able to model coordination, conflicts, interactions, etc…

Key advances

- Distributed constraints
- Constraints have degrees of violation
Distributed Constraint Optimization (DCOP)

Given
- Variables \{x_1, x_2, \ldots, x_n\}, each assigned to an agent
- Finite, discrete domains D1, D2, \ldots, Dn,
- For each xi, xj, valued constraint fij: Di x Dj \rightarrow N.

Goal
- Find complete assignment A that minimizes F(A) where,
 \[F(A) = \sum f_{ij}(d_i,d_j), \quad x_i \leftarrow d_i, x_j \leftarrow d_j \text{ in } A \]

Constraint Graph

<table>
<thead>
<tr>
<th>di</th>
<th>dj</th>
<th>f(di,dj)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

\[F(A) = 0 \quad (x_1, x_2) \]
\[F(A) = 4 \quad (x_1, x_3) \]
\[F(A) = 7 \quad (x_1, x_4) \]
<table>
<thead>
<tr>
<th>Optimization</th>
<th>Satisfaction</th>
<th>Execution Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical guarantee</td>
<td>No guarantee</td>
<td>Synchronous</td>
</tr>
<tr>
<td>Branch and Bound (Hirayama97)</td>
<td>Asynchronous Backtracking (Yokoo92)</td>
<td>Iterative Improvement (Yokoo96)</td>
</tr>
</tbody>
</table>
Desiderata for DCOP

Why is distributed important?
- Autonomy
- Communication cost
- Robustness (central point of failure)
- Privacy

Why is asynchrony important?
- Parallelism
- Robust to communication delays
- No global clock

Why are theoretical guarantees important?
- Optimal solutions feasible for special classes
- Bound on worst-case performance

loosely connected communities
State of the Art in DCOP

Why have previous distributed methods failed to provide asynchrony + optimality?

- **Branch and Bound**
 - Backtrack condition - when cost exceeds upper bound
 - Problem – sequential, synchronous

- **Asynchronous Backtracking**
 - Backtrack condition - when constraint is unsatisfiable
 - Problem - only hard constraints allowed

- **Observation** Previous approaches backtrack *only* when sub-optimality is proven
Adopt: Asynchronous Distributed Optimization

First key idea -- Weak backtracking
- Adopt’s backtrack condition – when lower bound gets too high

Why lower bounds?
- allows asynchrony
- allows soft constraints
- allows quality guarantees

Any downside?
- backtrack before sub-optimality is proven
- solutions need revisiting
 - Second key idea -- Efficient reconstruction of abandoned solutions
Adopt Algorithm

- Agents are ordered in a tree
 - constraints between ancestors/descendants
 - no constraints between siblings

- **Basic Algorithm:**
 - choose value with min cost
 - Loop until termination-condition true:
 - When receive message:
 - choose value with min cost
 - send **VALUE** message to descendents
 - send **COST** message to parent
 - send **THRESHOLD** message to child
Weak Backtracking

- Suppose parent has two values, “white” and “black”.

Explore “white” first
- \(LB(w) = 0 \)
- \(LB(b) = 0 \)

Receive cost msg
- \(LB(w) = 2 \)
- \(LB(b) = 0 \)

Now explore “black”
- \(LB(w) = 2 \)
- \(LB(b) = 0 \)

Receive cost msg
- \(LB(w) = 2 \)
- \(LB(b) = 3 \)

Go back to “white”
- \(LB(w) = 2 \)
- \(LB(b) = 3 \)

Termination Condition True
- \(LB(w) = 10 = UB(w) \)
- \(LB(b) = 12 \)
Example

Concurrently choose, send to descendents

- x1
- x2
- x3
- x4

Report lower bounds

- x1
- x2
- x3
- x4

LB = 1

x1 switches value

Note: x3’s cost message to x2 is obsolete since x1 has changed value, msg will be disregarded

Constraint Graph

<table>
<thead>
<tr>
<th>di</th>
<th>dj</th>
<th>f(di,dj)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>

LB = 0

x2, x3 report new lower bounds

Optimal solution
Revisiting Abandoned Solutions

Problem
- reconstructing from scratch is **inefficient**
- remembering solutions is **expensive**

Solution
- *backtrack thresholds* – **polynomial space**
- control backtracking to **efficiently** re-search

Parent informs child of lower bound:

Explore “white” first
- parent
 - LB(w) = 10
 - LB(b) = 0

Now explore “black”
- parent
 - LB(w) = 10
 - LB(b) = 11

Return to “white”
- parent
 - backtrack threshold = 10
Backtrack Thresholds

Suppose agent i received threshold $= 10$ from its parent

1. Explore “white” first
 - $\text{LB}(w) = 0$
 - $\text{LB}(b) = 0$
 - threshold $= 10$

2. Receive cost msg
 - $\text{LB}(w) = 2$
 - $\text{LB}(b) = 0$

3. Stick with “white”
 - $\text{LB}(w) = 2$
 - $\text{LB}(b) = 0$

4. Receive more cost msgs
 - $\text{LB}(w) = 11$
 - $\text{LB}(b) = 0$

5. Now try black
 - $\text{LB}(w) = 11$
 - $\text{LB}(b) = 0$

Key Point: Don’t change value until LB(current value) > threshold.
Backtrack thresholds with multiple children

How to correctly subdivide threshold?

Third key idea: Dynamically rebalance threshold

Time T_1

Time T_2

Time T_3
Evaluation of Speedups

Conclusions

• Adopt’s lower bound search method and parallelism yields significant efficiency gains

• Sparse graphs (density 2) solved *optimally, efficiently* by Adopt.
Number of Messages

Conclusion

• Communication grows linearly
 • only local communication (no broadcast)
Bounded error approximation

- **Motivation** Quality control for approximate solutions
- **Problem** User provides error bound b
- **Goal** Find any solution S where
 \[
 \text{cost}(S) \leq \text{cost}(\text{optimal soln}) + b
 \]

- **Fourth key idea**: Adopt’s lower-bound based search method naturally leads to bounded error approximation!
Conclusion

• Time-to-solution decreases as b is increased.

• Plus: Guaranteed worst-case performance!
Adopt summary – Key Ideas

- First-ever **optimal, asynchronous** algorithm for DCOP
 - polynomial space at each agent

- Weak Backtracking
 - *lower bound* based search method
 - Parallel search in independent subtrees

- Efficient reconstruction of abandoned solutions
 - *backtrack thresholds* to control backtracking

- Bounded error approximation
 - sub-optimal solutions *faster*
 - *bound* on worst-case performance