Commitment versus Flexibility in Law Enforcement Games

Shmuel Leshem (USC), Avraham Tabbach (TAU)

September 2010
Enforcement games

- General Setting

Examples:
- An employee chooses whether or not to work; an employer chooses how much to invest in monitoring the worker.
- A taxpayer chooses whether or not to report income truthfully; a tax authority chooses how frequently to audit taxpayers.
- A criminal chooses whether or not to commit an offense; the police choose how much to invest in prevention or detection of crime.
- A state chooses whether or not to develop a nuclear facility; a UN's nuclear inspection team decides on frequency of inspection.
Enforcement games

- General Setting
 - Offender chooses whether or not to comply with a rule or regulation
Enforcement games

- General Setting
 - Offender chooses whether or not to comply with a rule or regulation
 - Enforcer chooses how much to invest in enforcement
Enforcement games

- General Setting
 - Offender chooses whether or not to comply with a rule or regulation
 - Enforcer chooses how much to invest in enforcement

- Examples
Enforcement games

- **General Setting**
 - Offender chooses whether or not to comply with a rule or regulation
 - Enforcer chooses how much to invest in enforcement

- **Examples**
 - An employee chooses whether or not to work; an employer chooses how much to invest in monitoring the worker
 - A taxpayer chooses whether or not to report income truthfully; a tax authority chooses how frequently to audit taxpayers
 - A criminal chooses whether or not to commit an offense; the police choose how much to invest in prevention or detection of crime
 - A state chooses whether or not to develop a nuclear facility; a UN’s nuclear inspection team decides on frequency of inspection
Enforcement games

- **General Setting**
 - Offender chooses whether or not to comply with a rule or regulation
 - Enforcer chooses how much to invest in enforcement

- **Examples**
 - An employee chooses whether or not to work; an employer chooses how much to invest in monitoring the worker
 - A taxpayer chooses whether or not to report income truthfully; a tax authority chooses how frequently to audit taxpayers
Enforcement games

General Setting

- Offender chooses whether or not to comply with a rule or regulation
- Enforcer chooses how much to invest in enforcement

Examples

- An employee chooses whether or not to work; an employer chooses how much to invest in monitoring the worker
- A taxpayer chooses whether or not to report income truthfully; a tax authority chooses how frequently to audit taxpayers
- A criminal chooses whether or not to commit an offense; the police choose how much to invest in prevention or detection of crime
Enforcement games

General Setting
- Offender chooses whether or not to comply with a rule or regulation
- Enforcer chooses how much to invest in enforcement

Examples
- An employee chooses whether or not to work; an employer chooses how much to invest in monitoring the worker
- A taxpayer chooses whether or not to report income truthfully; a tax authority chooses how frequently to audit taxpayers
- A criminal chooses whether or not to commit an offense; the police choose how much to invest in prevention or detection of crime
- A state chooses whether or not to develop a nuclear facility; a UN’s nuclear inspection team decides on frequency of inspection
Law Enforcement Games

- Stackelberg game
Law Enforcement Games

- Stackelberg game

 - Enforcer commits to an observable investigation strategy
Stackelberg game

- Enforcer commits to an observable investigation strategy
 - Investigation = detection of offender conditional on non-compliance
- Detection of non-compliance does not rectify the harm from non-compliance
- Examples: Speeding or parking violation, bodily-injury crimes
- Subgame perfect Nash equilibrium
 - Given enforcement strategy, offender's choice of non-compliance is a best response
- Offender cannot threaten to never comply
- Enforcer's strategy is supported by commitment power (not subgame perfect)
Law Enforcement Games

- Stackelberg game
 - Enforcer commits to an observable **investigation** strategy
 - Investigation = detection of offender conditional on non-compliance
 - Offender chooses whether or not to comply
Law Enforcement Games

- Stackelberg game
 - Enforcer commits to an observable **investigation** strategy
 - Investigation = detection of offender conditional on non-compliance
 - Offender chooses whether or not to comply
 - Enforcement is aimed at **deterring** non-compliance
Law Enforcement Games

- **Stackelberg game**
 - Enforcer commits to an observable **investigation** strategy
 - Investigation = detection of offender conditional on non-compliance
 - Offender chooses whether or not to comply
 - Enforcement is aimed at **deterring** non-compliance
 - Detection of non-compliance does not rectify the harm from non-compliance
Law Enforcement Games

- **Stackelberg game**
 - Enforcer commits to an observable **investigation** strategy
 - Investigation = detection of offender conditional on non-compliance
 - Offender chooses whether or not to comply
 - Enforcement is aimed at **detering** non-compliance
 - Detection of non-compliance does not rectify the harm from non-compliance
 - Examples: Speeding or parking violation, bodily-injury crimes
Law Enforcement Games

- Stackelberg game
 - Enforcer commits to an observable **investigation** strategy
 - Investigation = detection of offender conditional on non-compliance
 - Offender chooses whether or not to comply
 - Enforcement is aimed at **deterring** non-compliance
 - Detection of non-compliance does not rectify the harm from non-compliance
 - Examples: Speeding or parking violation, bodily-injury crimes

- Subgame perfect Nash equilibrium
Law Enforcement Games

- **Stackelberg game**
 - Enforcer commits to an observable *investigation* strategy
 - Investigation = detection of offender conditional on non-compliance
 - Offender chooses whether or not to comply
 - Enforcement is aimed at **deterring** non-compliance
 - Detection of non-compliance does not rectify the harm from non-compliance
 - Examples: Speeding or parking violation, bodily-injury crimes

- **Subgame perfect Nash equilibrium**
 - Given enforcement strategy, offender’s choice of non-compliance is a best response
Law Enforcement Games

- Stackelberg game
 - Enforcer commits to an observable investigation strategy
 - Investigation = detection of offender conditional on non-compliance
 - Offender chooses whether or not to comply
 - Enforcement is aimed at deterring non-compliance
 - Detection of non-compliance does not rectify the harm from non-compliance
 - Examples: Speeding or parking violation, bodily-injury crimes

- Subgame perfect Nash equilibrium
 - Given enforcement strategy, offender’s choice of non-compliance is a best response
 - Offender cannot threaten to never comply
Law Enforcement Games

- **Stackelberg game**
 - Enforcer commits to an observable *investigation* strategy
 - Investigation = detection of offender conditional on non-compliance
 - Offender chooses whether or not to comply
 - Enforcement is aimed at *deterrence* non-compliance
 - Detection of non-compliance does not rectify the harm from non-compliance
 - Examples: Speeding or parking violation, bodily-injury crimes

- **Subgame perfect Nash equilibrium**
 - Given enforcement strategy, offender’s choice of non-compliance is a best response
 - Offender cannot threaten to never comply
 - Enforcer’s strategy is supported by commitment power (not subgame perfect)
Inspection Games

- Simultaneous game
Inspection Games

- Simultaneous game
 - Enforcer and offender choose strategies independently

Monitoring = detection of non-compliance

Enforcement is aimed at preventing non-compliance

Detection of non-compliance rectifies (at least partially) the harm from non-compliance

Example: Inspection of a nuclear facility

Mixed-strategy equilibrium

Since strategy spaces contain two actions, each player must be indifferent between his actions

Sanction doesn't affect crime, but only enforcement level (Tsebelis, 1989)
Inspection Games

- Simultaneous game
 - Enforcer and offender choose strategies independently
 - Enforcer chooses **monitoring** strategy

Monitoring = detection of non-compliance
Enforcement is aimed at preventing non-compliance
Detection of non-compliance rectifies (at least partially) the harm from non-compliance
Example: Inspection of a nuclear facility

Mixed-strategy equilibrium
Since strategy spaces contain two actions, each player must be indifferent between his actions
Sanction doesn’t affect crime, but only enforcement level (Tsebelis, 1989)
Inspection Games

- **Simultaneous game**
 - Enforcer and offender choose strategies independently
 - Enforcer chooses *monitoring* strategy
 - Monitoring = detection of non-compliance
Simultaneous game

- Enforcer and offender choose strategies independently
- Enforcer chooses **monitoring** strategy
 - Monitoring = detection of non-compliance
- Enforcement is aimed at **preventing** non-compliance
Inspection Games

Simultaneous game

Enforcer and offender choose strategies independently

Enforcer chooses **monitoring** strategy

- Monitoring = detection of non-compliance

Enforcement is aimed at **preventing** non-compliance

Detection of non-compliance rectifies (at least partially) the harm from non-compliance
Inspection Games

Simultaneous game

- Enforcer and offender choose strategies independently
- Enforcer chooses monitoring strategy
 - Monitoring = detection of non-compliance
- Enforcement is aimed at preventing non-compliance
- Detection of non-compliance rectifies (at least partially) the harm from non-compliance
- Example: Inspection of a nuclear facility
Inspection Games

- **Simultaneous game**
 - Enforcer and offender choose strategies independently
 - Enforcer chooses **monitoring** strategy
 - Monitoring = detection of non-compliance
 - Enforcement is aimed at **preventing** non-compliance
 - Detection of non-compliance rectifies (at least partially) the harm from non-compliance
 - Example: Inspection of a nuclear facility

- **Mixed-strategy equilibrium**
Inspection Games

- **Simultaneous game**
 - Enforcer and offender choose strategies independently
 - Enforcer chooses **monitoring** strategy
 - Monitoring = detection of non-compliance
 - Enforcement is aimed at **preventing** non-compliance
 - Detection of non-compliance rectifies (at least partially) the harm from non-compliance
 - Example: Inspection of a nuclear facility
- **Mixed-strategy equilibrium**
 - Since strategy spaces contain two actions, each player must be indifferent between his actions
Inspection Games

- Simultaneous game
 - Enforcer and offender choose strategies independently
 - Enforcer chooses *monitoring* strategy
 - Monitoring = detection of non-compliance
 - Enforcement is aimed at *preventing* non-compliance
 - Detection of non-compliance rectifies (at least partially) the harm from non-compliance
 - Example: Inspection of a nuclear facility

- Mixed-strategy equilibrium
 - Since strategy spaces contain two actions, each player must be indifferent between his actions
 - Sanction doesn’t affect crime, but only enforcement level (Tsebelis, 1989)
The Value of Commitment in Enforcement Games

The Criminal Investigation Division of the Environmental Protection Agency must choose whether

9 The Criminal Investigation Division of a state police has to decide whether to
announce, and commit to, a uniform investigation policy of a class of property crimes such as thefts and burglaries involving more than $100,000; or

to invest in investigating and detecting offenders involved in such crimes after having observed the gravity of the crime as measured, for example, by the amount stolen.
The Value of Commitment in Enforcement Games

- The Criminal Investigation Division of the Environmental Protection Agency must choose whether
 - to announce a plan to investigate a class of pollution incidents—say oil spills—irrespective of their severity; or
The Value of Commitment in Enforcement Games

- The Criminal Investigation Division of the Environmental Protection Agency must choose whether
 - to announce a plan to investigate a class of pollution incidents—say oil spills—irrespective of their severity; or
 - to decide on the level of investigation in response to the actual severity of pollution violations—such as the size of the oil spill.
The Value of Commitment in Enforcement Games

- The Criminal Investigation Division of the Environmental Protection Agency must choose whether
 - to announce a plan to investigate a class of pollution incidents—say oil spills—irrespective of their severity; or
 - to decide on the level of investigation in response to the actual severity of pollution violations—such as the size of the oil spill

- The Criminal Investigation Division of a state police has to decide whether to
The Value of Commitment in Enforcement Games

- The Criminal Investigation Division of the Environmental Protection Agency must choose whether
 - to announce a plan to investigate a class of pollution incidents—say oil spills—irrespective of their severity; or
 - to decide on the level of investigation in response to the actual severity of pollution violations—such as the size of the oil spill

- The Criminal Investigation Division of a state police has to decide whether to
 - announce, and commit to, a uniform investigation policy of a class of property crimes such as thefts and burglaries involving more than $100,000; or
The Value of Commitment in Enforcement Games

- The Criminal Investigation Division of the Environmental Protection Agency must choose whether
 - to announce a plan to investigate a class of pollution incidents—say oil spills—irrespective of their severity; or
 - to decide on the level of investigation in response to the actual severity of pollution violations—such as the size of the oil spill.

- The Criminal Investigation Division of a state police has to decide whether to
 - announce, and commit to, a uniform investigation policy of a class of property crimes such as thefts and burglaries involving more than $100,000; or
 - to invest in investigating and detecting offenders involved in such crimes after having observed the gravity of the crime as measured, for example, by the amount stolen.
Model highlights

- Compliance and enforcement are continuous and exhibit decreasing returns
Model highlights

- Compliance and enforcement are continuous and exhibit decreasing returns
- Enforcement is preventive or rectifying
Model highlights

- Compliance and enforcement are continuous and exhibit decreasing returns
- Enforcement is preventive or rectifying
- Offender moves first
Model highlights

- Compliance and enforcement are continuous and exhibit decreasing returns
- Enforcement is preventive or rectifying
- Offender moves first
 - Offender irrevocably chooses a level of non-compliance
Model highlights

- Compliance and enforcement are continuous and exhibit decreasing returns
- Enforcement is preventive or rectifying
- Offender moves first
 - Offender irrevocably chooses a level of non-compliance
 - Offender’s commitment to non-compliance is structural (pollution, theft)
Main results

1. Enforcer enjoys a first-mover advantage

Enforcer's payoffs are higher as a leader than in a Nash game.

2. Enforcer enjoys a second-mover advantage

Enforcer's payoffs are higher as a follower than in a Nash game.

3. Enforcer's equilibrium payoffs may be higher as a follower than as a leader

Depending on the Enforcer's first-versus second-mover advantage.
Main results

1. **Enforcer enjoys a first-mover advantage**
 - Enforcer’s payoff is higher as a leader than in a Nash game
Main results

1. **Enforcer enjoys a first-mover advantage**
 - Enforcer’s payoff is higher as a leader than in a Nash game

2. **Enforcer enjoys a second-mover advantage**
Main results

1. **Enforcer enjoys a first-mover advantage**
 - Enforcer’s payoff is higher as a leader than in a Nash game

2. **Enforcer enjoys a second-mover advantage**
 - Enforcer’s payoff is higher as a follower than in a Nash game
Main results

1. **Enforcer enjoys a first-mover advantage**
 - Enforcer’s payoff is higher as a leader than in a Nash game

2. **Enforcer enjoys a second-mover advantage**
 - Enforcer’s payoff is higher as a follower than in a Nash game

3. **Enforcer’s equilibrium payoff may be higher as a follower than as a leader**
Main results

1. **Enforcer enjoys a first-mover advantage**
 - Enforcer’s payoff is higher as a leader than in a Nash game

2. **Enforcer enjoys a second-mover advantage**
 - Enforcer’s payoff is higher as a follower than in a Nash game

3. **Enforcer’s equilibrium payoff may be higher as a follower than as a leader**
 - Depending on the Enforcer’s first- versus second-mover advantage
Plan of Presentation

- Model
Plan of Presentation

- Model
 - Strategies
Plan of Presentation

- Model
 - Strategies
 - Payoffs

- Reaction curves and Nash equilibrium
- Enforcer-leadership game
- Offender-leadership game
- Comparison of games
- Conclusion
Plan of Presentation

- Model
 - Strategies
 - Payoffs
- Reaction curves and Nash equilibrium
Plan of Presentation

- Model
 - Strategies
 - Payoffs
- Reaction curves and Nash equilibrium
- Enforcer-leadership game
Plan of Presentation

- Model
 - Strategies
 - Payoffs
- Reaction curves and Nash equilibrium
- Enforcer-leadership game
- Offender-leadership game
Plan of Presentation

- Model
 - Strategies
 - Payoffs
- Reaction curves and Nash equilibrium
- Enforcer-leadership game
- Offender-leadership game
- Comparison of games
Plan of Presentation

- Model
 - Strategies
 - Payoffs
- Reaction curves and Nash equilibrium
- Enforcer-leadership game
- Offender-leadership game
- Comparison of games
- Conclusion
Strategies

- Offender chooses level of non-compliance, $q \in [0, 1]$

 - Marginal gain from non-compliance is positive and decreasing:
 \[
 G_0(q) > 0, \quad G_{00}(q) < 0, \quad G_0(1) = 0
 \]

- Enforcer chooses probability of detection, $p \in [0, 1]$

 - Cost of detection is:
 \[
 c(p)
 \]

 - Marginal effectiveness of enforcement expenditure is positive and decreasing:
 \[
 c_0(p) > 0, \quad c_{00}(p) < 0
 \]

- Detection rectifies (ex ante or ex post) a portion of the harm

- Property crime
Strategies

- Offender chooses level of non-compliance, \(q \in [0, 1] \)
 - Marginal gain from non-compliance is positive and decreasing
Strategies

- Offender chooses level of non-compliance, $q \in [0, 1]$
 - Marginal gain from non-compliance is positive and decreasing
 - $G'(q) \geq 0$, $G''(q) < 0$, $G'(1) = 0$
Offender chooses level of non-compliance, $q \in [0, 1]$

- Marginal gain from non-compliance is positive and decreasing
 - $G'(q) \geq 0$, $G''(q) < 0$, $G'(1) = 0$

- Pollution emission, embezzlement of money
Strategies

- Offender chooses level of non-compliance, \(q \in [0, 1] \)
 - Marginal gain from non-compliance is positive and decreasing
 - \(G'(q) \geq 0, G''(q) < 0, G'(1) = 0 \)
 - Pollution emission, embezzlement of money

- Enforcer chooses probability of detection, \(p \in [0, 1] \)
Strategies

- Offender chooses level of non-compliance, $q \in [0, 1]$
 - Marginal gain from non-compliance is positive and decreasing
 - $G'(q) \geq 0, G''(q) < 0, G'(1) = 0$
 - Pollution emission, embezzlement of money
- Enforcer chooses probability of detection, $p \in [0, 1]$
 - Cost of detection is $c(p)$
Offender chooses level of non-compliance, \(q \in [0, 1] \)
- Marginal gain from non-compliance is positive and decreasing
 - \(G'(q) \geq 0, \ G''(q) < 0, \ G'(1) = 0 \)
- Pollution emission, embezzlement of money

Enforcer chooses probability of detection, \(p \in [0, 1] \)
- Cost of detection is \(c(p) \)
- Marginal effectiveness of enforcement expenditure is positive and decreasing
Strategies

Offender chooses level of non-compliance, \(q \in [0, 1] \)
- Marginal gain from non-compliance is positive and decreasing
 \[G'(q) \geq 0, \quad G''(q) < 0, \quad G'(1) = 0 \]
- Pollution emission, embezzlement of money

Enforcer chooses probability of detection, \(p \in [0, 1] \)
- Cost of detection is \(c(p) \)
- Marginal effectiveness of enforcement expenditure is positive and decreasing
 \[c'(p) > 0; \quad c''(p) > 0 \]
Strategies

- **Offender chooses level of non-compliance,** \(q \in [0, 1] \)
 - Marginal gain from non-compliance is positive and decreasing
 - \(G'(q) \geq 0, \ G''(q) < 0, \ G'(1) = 0 \)
 - Pollution emission, embezzlement of money

- **Enforcer chooses probability of detection,** \(p \in [0, 1] \)
 - Cost of detection is \(c(p) \)
 - Marginal effectiveness of enforcement expenditure is positive and decreasing
 - \(c'(p) > 0; \ c''(p) > 0 \)
 - Detection rectifies (ex ante or ex post) a portion of the harm
Strategies

- Offender chooses level of non-compliance, $q \in [0, 1]$
 - Marginal gain from non-compliance is positive and decreasing
 - $G'(q) \geq 0$, $G''(q) < 0$, $G'(1) = 0$
 - Pollution emission, embezzlement of money

- Enforcer chooses probability of detection, $p \in [0, 1]$
 - Cost of detection is $c(p)$
 - Marginal effectiveness of enforcement expenditure is positive and decreasing
 - $c'(p) > 0$, $c''(p) > 0$
 - Detection rectifies (ex ante or ex post) a portion of the harm
 - Property crime
Harm and sanction are proportional to non-compliance
Harm and sanction are proportional to non-compliance

Sanction: \(qS \)
Payoffs

Harm and sanction are proportional to non-compliance

- Sanction: qS
- Harm: qH
Payoffs

- Harm and sanction are proportional to non-compliance
 - Sanction: \(qS \)
 - Harm: \(qH \)
- Offender’s payoff:

\[
v(p, q) = (1 - p)G(q) - pqS.
\]
Payoffs

- Harm and sanction are proportional to non-compliance
 - Sanction: qS
 - Harm: qH

- Offender’s payoff:
 \[
 \nu(p, q) = \left(1 - p\right)G(q) - pqS.
 \]

- Enforcer’s payoff:
 \[
 \mu(p, q) = -\left(1 - p\right)qH - c(p).
 \]
From the offender’s perspective, strategies are substitutes.
From the offender’s perspective, strategies are substitutes

Offender’s marginal gain from non-compliance is decreasing in level of enforcement ($\frac{dv}{dqdp} < 0$)
Offender’s Reaction Curve

- From the offender’s perspective, strategies are substitutes
 - Offender’s marginal gain from non-compliance is decreasing in level of enforcement \(\frac{dv}{dqdp} < 0 \)
 - Offender’s best response is decreasing in level of enforcement
From the offender’s perspective, strategies are substitutes

- Offender’s marginal gain from non-compliance is decreasing in level of enforcement \(\left(\frac{dv}{dq dp} < 0 \right) \)

- Offender’s best response is decreasing in level of enforcement

- Offender’s best-response payoff is increasing in level of non-compliance \(\left(\frac{dv}{dq} \bigg|_{p_{br}(q)} > 0 \right) \)
From the offender’s perspective, strategies are substitutes

- Offender’s marginal gain from non-compliance is decreasing in level of enforcement \(\left(\frac{dv}{dqdp} < 0 \right) \)

- Offender’s best response is decreasing in level of enforcement

- Offender’s best-response payoff is increasing in level of non-compliance \(\left(\frac{dv}{dq} \bigg|_{p_{br}(q)} > 0 \right) \)

 - That is, Offender’s payoff is decreasing along his best-response curve
From the enforcer’s perspective, strategies are complements
From the enforcer’s perspective, strategies are complements.

- Enforcer’s marginal gain from enforcement is increasing in offender’s level of non-compliance \(\frac{du(p,q)}{dqdp} > 0 \)
From the enforcer’s perspective, strategies are complements

- Enforcer’s marginal gain from enforcement is increasing in offender’s level of non-compliance \(\left(\frac{du(p,q)}{dqdp} > 0\right)\)

- Enforcer’s best response is increasing in level of non-compliance
From the enforcer’s perspective, strategies are complements

- Enforcer’s marginal gain from enforcement is increasing in offender’s level of non-compliance \((\frac{du(p,q)}{dqdp}) > 0\)

- Enforcer’s best response is increasing in level of non-compliance

- Enforcer’s best-response payoff is decreasing in level of enforcement
 \(\left(\frac{du}{dp}\right)_{q_{br}(p)} < 0 < 0\)

\(\text{Enforcer’s Reaction Curve}\)
Enforcer’s Reaction Curve

- From the enforcer’s perspective, strategies are complements
 - Enforcer’s marginal gain from enforcement is increasing in offender’s level of non-compliance \(\left(\frac{du(p,q)}{dqdp} > 0 \right) \)
- Enforcer’s best response is increasing in level of non-compliance
- Enforcer’s best-response payoff is decreasing in level of enforcement
 \(\left(\frac{du}{dp} \bigg|_{q_{br}(p)} < 0 < 0 \right) \)
 - That is, Enforcer’s payoff is decreasing along his best-response curve
Iso Payoff Curves

Enforcer's Iso-Payoff Curves

Offender's Iso-Payoff Curves

- Payoff increases
- Zero profit line
Reaction Curves and Nash Equilibrium

Best Response Curves

- Enforcer's Reaction Curve
- Offender's Reaction Curve

p and q axes with values from 0 to 1.
Game of Conflict

- Each player’s best-response payoff decreases along his best-response curve
Enforcer-leadership game

- Time structure
Enforcer-leadership game

- Time structure
 - Stage 1: Enforcer commits to an observable level of enforcement
Enforcer-leadership game

Time structure

- Stage 1: Enforcer commits to an observable level of enforcement
- Stage 2: Offender chooses a level of non-compliance
Enforcer-leadership game

- **Time structure**
 - Stage 1: Enforcer commits to an observable level of enforcement
 - Stage 2: Offender chooses a level of non-compliance

- Enforcer chooses a point on Offender’s reaction curve to maximize its payoff
Enforcer-leadership game

- **Time structure**
 - Stage 1: Enforcer commits to an observable level of enforcement
 - Stage 2: Offender chooses a level of non-compliance

- Enforcer chooses a point on Offender’s reaction curve to maximize its payoff

- The ability to commit improves enforcer’s payoff relative to a simultaneous game
Enforcer-leadership game

- Time structure
 - Stage 1: Enforcer commits to an observable level of enforcement
 - Stage 2: Offender chooses a level of non-compliance

- Enforcer chooses a point on Offender’s reaction curve to maximize its payoff

- The ability to commit improves enforcer’s payoff relative to a simultaneous game

- Enforcer’s optimal level of enforcement is higher relative to a simultaneous game
Enforcement not Lower in an Enforcer-Leadership than in a Nash Game

- Suppose Enforcer choose \(p^A \) (less enforcement relative to Nash); offender replies with \(q^A \)
Enforcement not Lower in an Enforcer-Leadership than in a Nash Game

- Suppose Enforcer choose p^A (less enforcement relative to Nash); offender replies with q^A.
- Enforcer’s payoff is higher at B than at A (p^B is a best response) and is higher at N than at B (Enforcer’s payoff is decreasing along his reaction curve) \Rightarrow Enforcer should choose p^N rather than p^A.

![Enforcement Diagram](image-url)
Enforcer-Leadership Game Equilibrium

The diagram illustrates the Enforcer-Leadership Equilibrium in a two-dimensional graph. The axes are labeled with q and p, indicating the variables in the game. The equilibrium is depicted by a point (q^*, p^*) where the two curves intersect.
Enforcer’s Problem as a Leader

- Enforcer minimizes the expected harm from non-compliance plus enforcement cost
Enforcer’s Problem as a Leader

- Enforcer minimizes the expected harm from non-compliance plus enforcement cost
- Enforcer’s problem:

\[\min_p [(1 - p) q_{br}(p) H + c(p)] \]
Enforcer’s Problem as a Leader

- Enforcer minimizes the expected harm from non-compliance plus enforcement cost.

- Enforcer’s problem:

\[
\min_p [(1 - p) q_{br}(p) H + c(p)]
\]

- First Order Condition:

\[
\frac{\partial c(p)}{\partial p} - q H = \frac{d q_{br}(p)}{d p} (1 - p) H = 0
\]

- Direct Effect

\[c(p) - q H\]

Marginal net gain, given q

- Strategic Effect

\[dq_{br}(p)\]

Marginal deterrence gain
Offender-Leadership Game

- Time structure
Offender-Leadership Game

- Time structure
 - Stage 1: Offender chooses an observable level of non-compliance
Offender-Leadership Game

Time structure

- Stage 1: Offender chooses an observable level of non-compliance
- Stage 2: Enforcer observes level of non-compliance and chooses level of enforcement
Offender-Leadership Game

- Time structure
 - Stage 1: Offender chooses an observable level of non-compliance
 - Stage 2: Enforcer observes level of non-compliance and chooses level of enforcement
- Offender chooses a point on Offender’s best response curve to maximize his payoff
Offender-Leadership Game

- **Time structure**
 - Stage 1: Offender chooses an observable level of non-compliance
 - Stage 2: Enforcer observes level of non-compliance and chooses level of enforcement

- Offender chooses a point on Offender’s best response curve to maximize his payoff

- The ability to commit improves offender’s payoff relative to a simultaneous game
Offender-Leadership Game

- **Time structure**
 - Stage 1: Offender chooses an observable level of non-compliance
 - Stage 2: Enforcer observes level of non-compliance and chooses level of enforcement

- Offender chooses a point on Offender’s best response curve to maximize his payoff
- The ability to commit improves offender’s payoff relative to a simultaneous game
- Level of non-compliance is lower relative to a simultaneous game
Non-Compliance not Higher in an Offender-Leadership than a Nash Game

- Suppose offender chooses q^A (more non-compliance relative to Nash); enforcer replies with p^A
Suppose offender chooses q^A (more non-compliance relative to Nash); enforcer replies with p^A.

Offender’s payoff is higher at B than at A (q^B is a best response) and is higher at N than at A (offender’s payoff is decreasing along his reaction curve) \Rightarrow Offender should choose q^N rather than q^A.

Non-Compliance not Higher in an Offender-Leadership than a Nash Game
Offender-Leadership Game

Offender-leadership Equilibrium
Offender-Leadership Game

- Offender maximizes gain from non-compliance minus expected sanction
Offender-Leadership Game

- Offender maximizes gain from non-compliance minus expected sanction
- Offender’s problem:

\[
\max_q \left[(1 - p_{br}(q))G(q) - p_{br}(q)qS \right]
\]
Offender-Leadership Game

- Offender maximizes gain from non-compliance minus expected sanction
- Offender’s problem:

\[
\max_q [(1 - p_{br}(q))G(q) - p_{br}(q)qS]
\]

- First-Order Condition

\[
\begin{align*}
\text{Direct Effect} & \quad \frac{dp_{br}(q)}{dq} (G(q) + qs) = 0 \\
\text{Marginal net gain given } p & \quad \frac{(1 - p_{br}(q))G(q) - p_{br}(q)S}{dp_{br}(q)}
\end{align*}
\]

\[
\text{Strategic Effect} \\
\text{Marginal inducement loss}
\]
Stackelberg versus Nash

<table>
<thead>
<tr>
<th></th>
<th>Enforcer-Leadership</th>
<th>Offender-Leadership</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enforcement</td>
<td>Higher</td>
<td>Lower</td>
</tr>
<tr>
<td>Offender’s Payoff</td>
<td>Lower</td>
<td>Higher</td>
</tr>
</tbody>
</table>
Stackelberg versus Nash

<table>
<thead>
<tr>
<th></th>
<th>Enforcer-Leadership</th>
<th>Offender-Leadership</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Compliance</td>
<td>Lower</td>
<td>Lower</td>
</tr>
<tr>
<td>Enforcer’s Payoff</td>
<td>Higher</td>
<td>Higher</td>
</tr>
<tr>
<td></td>
<td>Enforcer-Leadership</td>
<td>Offender-Leadership</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Non-Compliance</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Enforcer's payoff</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
No Sanction: Enforcer has no First-Mover Advantage

• Nash and Enforcer-Leadership Equilibrium

If $S = 0$, the enforcer's best response is $q = 1$.

Enforcers cannot induce deterrence as a leader.
No Sanction: Enforcer has no First-Mover Advantage

- Nash and Enforcer-Leadership Equilibrium

\[S = 0, \] offender’s problem reduces to \(\max_q (1 - p) G(q) \)
No Sanction: Enforcer has no First-Mover Advantage

- Nash and Enforcer-Leadership Equilibrium

If \(S = 0 \), offender’s problem reduces to \(\max_q (1 - p) G(q) \)

for \(p < 1 \), the offender’s best response is \(q = 1 \)
No Sanction: Enforcer has no First-Mover Advantage

- Nash and Enforcer-Leadership Equilibrium

\[S = 0, \text{ offender's problem reduces to } \max_q (1 - p) G(q) \]
- for \(p < 1 \), the offender’s best response is \(q = 1 \)
- Enforcer’s cannot induce deterrence as a leader
No Sanction: Enforcer has a Second-Mover Advantage

- Offender-Leadership Equilibrium

\[q^* = 1 \]

\[q \]

\[p^* \]

\[1 \]

Offender-Leadership Equilibrium
No Sanction: Enforcer has a Second-Mover Advantage

- **Offender-Leadership Equilibrium**

\[
offender' s \text{ problem as a leader is } \max_q (1 - p_{br}(q)) G(q)
\]

By lowering non-compliance relative to Nash, offender reduces the probability of detection thereby increasing his payoff.
No Sanction: Enforcer has a Second-Mover Advantage

- Offender-Leadership Equilibrium

Offender’s problem as a leader is $\max_q (1 - p_{br}(q)) G(q)$

By lowering non-compliance relative to Nash, offender reduces the probability of detection thereby increasing his payoff.
Linear Enforcement costs (Constant Marginal Enforcement Costs)

Enforcer’s marginal gain from preventing non-compliance \((qH)\) is either higher or lower than his marginal cost.
Enforcer’s marginal gain from preventing non-compliance \((qH)\) is either higher or lower than his marginal cost.

Enforcer’s best response is:

\[
p = 0 \text{ for } q < q^* \\
p = 1 \text{ for } q > q^* \\
p \in [0, 1] \text{ for } q > q^*
\]
Linear Enforcement costs: Enforcer has no Second-Mover Advantage

- Offender-leadership equilibrium

The diagram illustrates the relationship between p^* and q^*, with p^* = 0 and q^* = 1 indicating the Offender-leadership Equilibrium.
Linear Enforcement costs: Enforcer has no Second-Mover Advantage

- Offender-leadership equilibrium
- When offender moves first, offender can choose a level of non-compliance infinitesimally lower than the Nash level
Linear Enforcement costs: Enforcer has no Second-Mover Advantage

- Offender-leadership equilibrium
- When offender moves first, offender can choose a level of non-compliance infinitesimally lower than the Nash level
- Enforcer’s payoff is equal to his Nash payoff since given q^* enforcer’s payoff is independent of p
Linear Enforcement costs: Enforcer has a First-Mover Advantage

- Enforcer-leadership equilibrium

![Diagram showing Enforcer-leadership equilibrium](image-url)
Linear Enforcement costs: Enforcer has a First-Mover Advantage

- Enforcer-leadership equilibrium

- When enforcer moves first, he can induce the offender to choose a level of non-compliance lower than the Nash level
Continuous actions give rise to an offender-leadership enforcement game
Continuous actions give rise to an offender-leadership enforcement game

Offender enjoys both a first-mover and a second-mover advantage (relative to Nash)
Continuous actions give rise to an offender-leadership enforcement game

Offender enjoys both a first-mover and a second-mover advantage (relative to Nash)

Enforcer might prefer to be a follower than a leader if second-mover advantage greater than first-mover advantage
Continuous actions give rise to an offender-leadership enforcement game.

Offender enjoys both a first-mover and a second-mover advantage (relative to Nash).

Enforcer might prefer to be a follower than a leader if second-mover advantage greater than first-mover advantage.

Other Applications?