Theorem 2: Under free communication, consider a team of agents using a coordination policy: \(\pi_{\Sigma}(b^t_{\Sigma}) \equiv \Omega_t^t \). If the domain-level policy \(\pi_A \) maximizes \(V^T(\pi_A, \pi_{\Sigma}) \), then this combined policy is dominant over any other policies. In other words, for all policies, \(\pi'_A, \pi'_{\Sigma} \), \(V^T(\pi'_A, \pi'_{\Sigma}) \geq V^T(\pi_A, \pi_{\Sigma}) \).

Proof: Suppose we have some other coordination policy, \(\pi'_{\Sigma} \), that specifies something other than complete communication (e.g., keeping quiet, lying). Suppose that there is some domain-level policy, \(\pi'_A \), that allows the team to attain some expected reward, \(K \), when used in combination with \(\pi'_{\Sigma} \). Then, we can construct a domain-level policy, \(\pi_A \), such that the team attains the same expected reward, \(K \), when used in conjunction with the complete communication policy, \(\pi_{\Sigma} \), as defined in the statement of Theorem 2.

The coordination policy, \(\pi'_{\Sigma} \), produces a different set of belief states (denoted \(b^t_{\Sigma} \) and \(b^t_{\Sigma,i} \)) than those for \(\pi_{\Sigma} \) (denoted \(b^t_{\Sigma} \) and \(b^t_{\Sigma,i} \)). In particular, we use state estimator functions, \(SE_{\Sigma,i}^t \) and \(SE_{\Sigma}^t \), as defined in Equations 2 and 3, to generate \(b^t_{\Sigma} \) and \(b^t_{\Sigma,i} \). Each belief state is a complete history of observation and communication pairs for each agent. On the other hand, under the complete communication of \(\pi_{\Sigma} \), the post-communication state estimator function reduces to:

\[
SE_{\Sigma,i}(\langle \Omega^0, \ldots, \Omega^{t-1}, \Omega_t^t \rangle, \Sigma^t) = \langle \Omega^0, \ldots, \Omega^{t-1}, \Sigma^t \rangle
\]

Since each agent’s message is exactly its observation,

\[
= \langle \Omega^0, \ldots, \Omega^{t-1}, \Sigma^t \rangle
\]

Thus, \(\pi_A \) is defined over a different set of belief states than \(\pi'_A \). In order to determine an equivalent \(\pi_A \), we must first define a recursive mapping, \(m_i \), that translates the belief states defined by \(\pi_{\Sigma} \) into those defined by \(\pi'_{\Sigma} \):

\[
m_i(b^t_{\Sigma,i})
\]

The belief state at time \(t \) is a sequence of observations, which we can divide into the observations before time \(t \) and the observation at time \(t \). The observations before time \(t \) correspond exactly to the belief state at time \(t - 1 \).

\[
m_i(b^t_{\Sigma,i} \cdot \Omega^t)
\]

The combined observation at time \(t \) includes agent \(i \)’s observation, as well as everyone else’s observations.

\[
m_i(b^t_{\Sigma,i} \cdot \Omega^t)
\]

We can “distribute” the mapping function over the two components in the tuple. Under \(\pi'_{\Sigma} \), the agents would not communicate their observations, but instead some other set of messages.

\[
m_i(b^t_{\Sigma,i} \cdot \Omega^t)
\]

We can break these messages down across the individual agents.

\[
m_i(b^t_{\Sigma,i} \cdot \Omega^t)
\]

Each agent, \(j \), selects its message based on following the communication policy, \(\pi'_j \), from its pre-communication belief state.

\[
m_i(b^t_{\Sigma,i} \cdot \Omega^t)
\]
We can generate each agent’s pre-communication belief state by applying the pre-communication state-estimator function to each agent’s previous post-communication belief state and its most recent observation (which we know from its previous message, under full communication).

\[m_i(b_{t-1}^{\bullet}) \left\{ \Omega_i, \prod_{j \in a} \pi_j^{t} \bigl(\mathcal{SE}_{j}^{t} \bigl(b_{j \in \alpha}^{t-1}, \Omega_j^{t} \bigr) \bigl) \right\} \]

Finally, we can compute each agent’s previous post-communication belief state by again applying the mapping function.

\[m_i(b_{t-1}^{\bullet}) \left\{ \Omega_i, \prod_{j \in a} \pi_j^{t} \bigl(\mathcal{SE}_{j}^{t} \bigl(m_j(b_{j \in \alpha}^{t-1}), \Omega_j^{t} \bigr) \bigl) \right\} \quad (2) \]

Given this mapping, we then specify: \(\pi_A(b_{t}^{\bullet}) = \pi_A(m_i(b_{t}^{\bullet})) \). Executing this domain-level policy, in conjunction with the coordination policy, \(\pi_\Sigma \), results in the identical behavior as execution of the alternate policies, \(\pi_A' \) and \(\pi_\Sigma' \). Therefore, the team following the policies, \(\pi_A \) and \(\pi_\Sigma \), will achieve the same expected value of \(K \), as under \(\pi_A' \) and \(\pi_\Sigma' \). \(\square \)